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Abstract

Cal Poly SuPER System Simulink Model and Status and Control 
System 

 

Tyler Sheffield 

 

The Cal Poly Sustainable Power for Electrical Resources (SuPER) project is 

developing a solar power DC distribution system designed to intelligently service almost 

any load that might be needed by a single off-grid household.  A prototype has been 

constructed and tested.  This thesis describes the creation of a modular MATLAB 

Simulink model of the entire system, whose principal components include a PV array, 

DC-DC buck converter, lead-acid battery, various loads, and a digital status and control 

subsystem.  Also presented is the design of the status and control software, which runs on 

a Linux PC platform.  The Simulink model is validated by comparison to measured 

prototype responses.  Simulations are used to predict SuPER system behavior under 

various load scenarios, in order to maximize battery life.  The simulation will be a 

valuable development tool for future SuPER advancements. 
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Chapter 1:  Introduction 

1.1 The SuPER Project 
 

The Sustainable Power for Electrical Resources project was born in July of 2005 

with Dr. James Harris’ white paper describing a durable, low-cost, family owned solar 

power system [1].  It is intended as a self-contained and self-monitoring off-grid DC 

system with energy storage capability that will service a wide variety of loads.  It was 

anticipated that development time of the system would be around five years, with the first 

three years dedicated to research, design, and the building of a prototype system.  A goal 

of SuPER is to demonstrate that the system can extend component life, especially that of 

the battery, and achieve very low failure rate.  It is expected that SuPER will be used by 

family units in low-income, high-insolation areas of the world.   

1.2 Personal Involvement 

I first learned about the SuPER project at a presentation made by Dr. James Harris 

at one of the Friday afternoon sessions of the department’s weekly graduate student 

seminars.  Photovoltaic cells are a fascinating technology, and though I knew very little 

about power generation and distribution it was clear that the call for a digital control 

system could use some computer engineering expertise.  I began meeting with the 

development team in January 2006, which is about the time construction of the project 

prototype began. 

My contributions to the effort for the first six months of my association with the 

project consisted largely of support for Eran Tal, working on his thesis [2].  Readers new 
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to SuPER ought to become familiar with Tal’s work, as he led the team in building the 

first stage of the prototype and provided a foundation for all that has been accomplished 

since.  During this period, I provided some software expertise to the team in doing some 

C and assembly language programming, as well as managing the Linux development 

environment on the project computers.   

Since Tal graduated in summer 2006 and I took over project leadership, SuPER 

has been a whirlwind learning experience for me.  My educational and professional 

engineering experiences have largely fallen under the programmable logic, embedded 

systems and signal processing disciplines.  I have never been a power and control 

systems engineer or a proficient analog circuit designer, yet while working on SuPER I 

have found a need to be a little bit of each of these in order to reach both personal and 

team objectives.  That is perhaps the most rewarding part of the entire experience.  The 

knowledge gained working on this project has added significant breadth to my pool of 

engineering resources and tools. 

1.3 Solar Power Systems 
 

In section 2.1 of Tal’s 2006 thesis paper [2], he convincingly outlines the case for 

SuPER; only a summary of his arguments will be presented here.  There are 

multitudinous opinions on whether or not rising global temperatures are directly caused 

by human activity; regardless of the cause, it is nevertheless a fact that atmospheric 

carbon dioxide levels, and by extension, temperatures, have been sharply on the rise in 

the last 25 years [3].  Such changes will have consequences for life on this planet as we 

know it.  SuPER harvests energy from a renewable source, and contributes no direct air 

pollution to the environment.  It is a device designed with the goal of sustainability in 
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mind.  It is also intended to be a low-cost system (which will “pay for itself” within a 

short time of activation [1]) in order to provide advantages to lower income families who 

have not previously had access to a power generation system.  There is no grid 

infrastructure required as all issues associated with long distance power distribution are 

removed as costs, obstacles, and energy sinks.   

Solar cell technology is becoming increasingly important as an energy source for 

reasons alluded to above.  As a result, it is also becoming a more ubiquitous, better 

researched, more efficient and more cost-effective technology [4].  The technology is 

quickly developing into a preferable option among those in SuPER’s target market, 

where cooking, heating and lighting energy needs are largely still provided by fossil-fuels 

[5].   

There are a few commercially-available solar power systems similar in scope to 

SuPER, such as those manufactured by SunWize (www.sunwize.com).  SuPER is an 

attempt to develop one of these types of systems at much lower cost, and the team 

anticipates future advancements in technology that will make this possible.   This is 

especially true of solar cell and battery technology.  What is unique about SuPER is how 

it is put together, and perhaps more importantly, why.   

In [6] Sharaf and Ul Haque present a DC motor solar power system, along with 

Simulink models, but there is no storage in the system.  In [7] by Chiang, Chang, and 

Yen a system very similar to SuPER is proposed and prototyped, although it is designed 

to be a supplement to grid power rather than a replacement.  This is the case with many 

commercial systems.  For related reasons the authors are unconcerned with managing 

individual loads and optimizing battery life.  There are countless additional published 
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papers that address a wide variety of other issues with the components that make up 

SuPER, including, but not limited to, converter topologies, battery state of charge (SOC) 

measurement, and maximum power point tracking (MPPT) techniques.  Most 

publications referenced by the SuPER team do not propose or demonstrate a system on 

the scale of the SuPER project. 

1.4 Thesis Objectives 
 

The broader focus of the work carried out on this thesis project is the effort to 

build a reliable, self-monitoring and adjusting 150W solar powered DC plant and 

distribution system.  In these early stages of development, the loads considered are a 

small television, electric cooler, LEDs for lighting, laptop, and permanent magnet motor.  

The first seven months of the SuPER team’s efforts resulted in a partially complete open-

loop system dubbed Phase 0.  The white paper mentions the goal of achieving a complete 

prototype system, Phase 1, within one year of commencement.  A few months into 

project work, the team felt confident in reaching and even exceeding that goal.  However, 

the development of the DC-DC converter, a crucial subsystem, hit a few road blocks.  

Phase 1 was not achieved by the end of 2006 as expected, nor was it by March 2007 

despite the fact that new converter teams came on board in October 2006 and February 

2007.   

As a result of these hardware setbacks, we were inclined to turn our attention 

towards other efforts for the time being.  The software for the status and control system, 

written in C, was developed as necessary in preparation for the integration of the 

converter.  The SuPER team also recognized the knowledge that can be gained in 

simulating such a complex system in computer software, and this thesis presents a 
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complete first generation system model.  Such a simulation can reveal what types of load 

scenarios a 150W panel can support, establish load time and power boundaries, and 

provide information on how and when to best utilize battery energy storage while 

maximizing the life of the battery.  The simulation will also be critical for making plans 

for scaling the system up in size (power).  The goal of the thesis is to show that a virtual 

mathematical model of the entire system compares favorably with a prototype system 

constructed entirely by students (with faculty and staff guidance).  Simulink, with its 

SimPowerSystems model package, is used regularly in industry as a power and control 

system simulation tool and has been chosen for the SuPER simulation. 

Achieving this goal will require characterization of the DC loads and careful 

study of prototype performance so as to allow proper modeling in Simulink  As such, the 

majority of the work done by the author during fall 2006 and winter 2007 quarters has 

been in these areas:   

1) constructing the Simulink model and simulating the system 

2) developing the framework for the prototype status and control system software 

3) testing the system operationally under a variety of load conditions 

4) characterizing the loads 

5) solving both hardware and software bugs that have periodically arisen 

6) coordinating and supporting the undergraduate students working on senior 

projects associated with SuPER 

1.5 Document Overview 
 

Chapter two introduces the SuPER system prototype as it existed in the fall of 

2006; included is information about the loads which SuPER will power and specifics 
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about the team’s approach to battery management, which becomes a very sensitive issue.  

Some of the requirements for the next generation of the system are presented, which will 

provide an understanding of what the SuPER team hoped to accomplish by the end of 

March 2007. 

Chapter three provides the details for the software of the prototype’s status and 

control system, the real brains of SuPER.  The system consists of a series of sensors 

which feed data into a laptop computer for computations and convey corresponding 

output signals to control various components. 

Chapter four represents the bulk of the work done by the author, which was the 

creation of a MATLAB Simulink model of the entire SuPER system.  Each part of the 

model is presented, and design decisions defended.   

Chapter five describes through examples how the simulation is used to estimate 

the optimal control strategies to be put into use with the prototype’s control system.  A 

comparison of measurements of the prototype in action and simulation results is made for 

multiple load scenarios. 

The final chapter gives closure to things learned and conclusions determined from 

the experiences of this thesis work.  Recommendations are made for the future as part of 

a review on problems that have now been neatly defined thanks to the progress made on 

SuPER in the last six months. 

Appendices at the very end of the document are a repository for information 

pertinent to the success of SuPER but supplementary in nature to this thesis.  
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Chapter 2:  Background 

2.1 Phase 0 Prototype 
 

Tal spearheaded the effort throughout the first half of 2006 to assemble the first 

SuPER system.  The resulting system is a completely functional prototype, and the 

current state of the system is known as the Phase 0 system (Figure 2.1).  

 

 

 

 

 

 

 

 

 

Figure 2.1 - Photo of SuPER Cart, Associated Loads 

 

SuPER consists of a PV array, DC-DC converter, storage battery, and DC loads.  

Batteries are one of the most expensive components in the system as they cannot be 

manufactured on campus.  Two of the key loads in the system, a water pump and small 

refrigerator, are intended to be run primarily during hours of peak insolation, but the 

SuPER team also considers evening lighting to be an essential load.  The improvement in 
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safety and reliability of electrical lighting over fossil-fuel consuming sources is worth the 

additional cost and complexity of including battery storage.  Figure 2.2 is the Phase 0 

block diagram. 

PC

Switch 
Toggle and 
Sensor C-

Code

MPPT charge 
control 

algorithm C-
code

USB 6009

V1 V2 V3

I1

VL

I2 I3 IL

T3

T2

T1

Loads

PV Out

DC-DC Out

Stage: Integrate all 
individual system 

components to one unit on 
the cart

This block diagram varies 
from the Phase 1 block 

diagram in only two places:
1) Outback MX-60 instead of 

DC-DC converter.
2) Open loop PWM signal, 
since there is no DC-DC 

converter to interface it with.

PWM duty 
cycle and serial 
communication 

C-Code

PIC Microcontroller

TTL-to-
Serial 

Converter

Outback MX-60PV Panel 150W Battery 12V

Loads
MAX622 High 
Side Driver w\ 

MM74C903 Hex 
Buffer

PVI1090 
High Side 

Driver

USB Interface

Serial 
Interface

PIC Microcontroller

PWM Signal
(Open Loop Response)

T1 T2 T3

VL IL

V3 I3V2 I2

V1 I1

 

Figure 2.2 - Phase 0 Block Diagram [2] 

 

The Phase 0 system uses the MX60, a high-capacity DC-DC converter 

manufactured by Outback Power Systems, to buck the voltage level from the PV array to 

the desired 12V level on the load and battery bus.  The MX60 is not simply a converter, 

but also an MPPT charge controller.  This feature has been critical for this early period of 

prototype development.   
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2.1.1 Power and Distribution 

It was hoped that the Phase 0 system would provide about 400Wh of energy per 

day.  About half of that was earmarked for the 187W DC motor, while the remainder 

would service the battery and all other loads.  However, the motor’s output rating is 

187W.  The permanent magnet motor is not 100% efficient, and to produce 187W of 

power the motor requires more than 240W of input power.  In addition, the laptop needs 

to be running at all times throughout the day and requires at least 240Wh for an eight 

hour run.  As such, the priorities of the Phase 1 control system needed to be reconsidered, 

and this will be discussed in later chapters.   

See Figure 2.3 for the Phase 0/1 power flow diagram.  Power consumed by sensor 

and switch boards, lost in cable and switch resistances, or otherwise unaccounted for and 

attributed to system losses, is significant and preliminary loss investigations will be 

presented in chapter five. 

 

Figure 2.3 – SuPER Power Flow Diagram 
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During previous work on SuPER, the team had somehow overlooked the 

problematic issue of high current (which we will call current above five amps) traversing 

the copper traces on the switch board PCB.  This was not realized until motor testing one 

afternoon.  The load torque was increased to about 4 lb·in, which was higher than 

previously tested values.  At this level the motor seeks to draw upwards of seven amps, 

perhaps eight or nine, depending on the load bus voltage.  It turns out that the PCB traces 

were thick enough only for about five amps, and the increased current caused the traces 

to heat up and melt the solder joints at the MOSFET.  This in turn created a short at the 

MOSFET terminals.  The problem was first noticed when the status system reported a 

draw of 39A from the battery (due to the newly created short), which would be possible 

in a scenario with many running loads, but highly abnormal and great cause for alarm in 

this particular case.  In addition, it was unexpected to see such a draw because some 

measure of protection had been expected from the circuit breakers in the breaker box.  

However, the team failed to account for the slow response of breakers to negotiating 

currents above breaker ratings.  Breakers do not, in fact, mimic fuses in functionality.  

Their response instead obeys the tripping time curve seen in Figure 2.4.  Thus, for the 

30A breaker in use on the hot battery line, a 39A draw is just under 130% of rated 

current.  At that level, it would have taken one minute for the breaker to trip.  It was 

never given a chance as the problem was discovered and the system shut down manually 

in a matter of a few seconds. 
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Figure 2.4 - Circuit Breaker Industries (CBI) Breaker Response Curve 

 

One particular breaker, on the DC motor load line, was replaced by a fuse.  

Largely motivated by this experience, it was determined that as soon as reasonable, the 

original switchboard should be replaced by smaller, modular boards each crafted to 

handle certain amounts of current.  Such modularity would have the added benefit of 

improving troubleshooting and repair turn-around time.  As part of this process, it will be 

necessary to learn about the design and manufacture of high current PCBs.  Kaha 

Sariashvili joined SuPER in January 2007 to design and test a board for the motor load, 

and suggest new designs for the switch board. 
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2.1.2 Status and Control Hardware 

A/D conversion for data acquisition is accomplished by use of multiple National 

Instruments’ (NI) USB-6009 Multifunction Data Acquisition (DAQ) devices.  As 

indicated, they interface to a PC host via USB.  All data that provides system status 

information to the PC for control comes in through these devices.  The network of 

sensors, data acquisition devices, and PC software that manages the devices and data is 

collectively known as the SuPER status system.  Figure 2.5 shows a simple block 

diagram of this system.  The hardware of this system in its current state is partly the work 

of Gustavo Vasquez, as documented in his Spring 2006 senior project paper [8]. 

 

Figure 2.5 – Status System Interface Block Diagram [8] 

 

There is a triple of key sensors (voltage, current, and temperature) at each of three 

essential locations in the system:  the PV array, the DC-DC converter output, and the 

battery.  In addition, the voltage and current are monitored at each load.  Newly added in 

recent months is a pyranometer which outputs a voltage level corresponding to the level 

of insolation.  Therefore the total number of status system inputs, M, is defined as: M = 

10 + 2·L where L is the number of loads. 

The current sensors used are the ZAP25 and AMP50 models manufactured by 

Amploc.  Temperature data is provided by National Semiconductor’s LM50 sensor.  
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Vasquez’s efforts included sensor characterization and calibration, the construction of 

sensor circuit boards, and work on the status system data reading code.  The sensor 

circuit boards are for converting the current and temperature sensor output voltages to 

proper levels for the A/D inputs.  Also, the subsystem voltage levels are stepped down to 

required levels for the USB-6009 devices. 

The pyranometer is manufactured by Apogee Instruments, Inc. and measures the 

insolation, which is the radiation between wavelengths of 300 and 1100nm incident to the 

Earth’s surface [9].  The level of insolation outside the earth’s atmosphere has been 

measured at 1370 watts per square meter (Wm-2) [10].  The level incident to the earth’s 

surface is less due to atmospheric attenuation and other factors, and the maximum 

terrestrial insolation observed by SuPER team members is just under 1100Wm-2.  There 

is a reduction in incident insolation as the angle between the normal to the sun’s rays and 

the line of propagation of rays to the point of measurement increases.  Thus, equatorial 

regions receive greater insolation than other regions of the planet in general.  The amount 

of reduction corresponds directly to the angle and this effect is expressed mathematically 

as Lambert’s cosine law [9]; for this reason Apogee instructs that the pyranometer must 

be mounted parallel to the ground. The pyranometer is calibrated to output 1mV per 

5Wm-2, or a maximum of 220mV at the full insolation level of 1100Wm-2.  The value of 

5Wm-2 in this ratio is determined by fabrication methods and materials, and is inscribed 

upon the device by the manufacturer.  The manufacturer reports a temperature sensitivity 

of about .1% per degree C, for which we do not compensate at this time.   

A circuit for amplifying the pyranometer output was constructed on a breadboard 

attached to the inner wall of the switch box, an effort supported by senior Slavic 
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Orzhakovsky.  The circuit is diagrammed in Figure 2.6.  We use an LM324 operational 

amplifier in a voltage reference configuration, powered with an LM340 voltage regulator 

which steps down the 12V system bus voltage to 5V.  The measured resistor values are 

9.87kΩ and 2.18kΩ for R1 and R2, respectively.  This results in a gain A of 5.52. 

R1

R2

5V

Apogee 
pyranometer
0 - 220 mV 

LM324

LM340
Regulator
(from 12V bus)

Vout

2.2k

10k 

Figure 2.6 – Pyranometer Data Circuit 

 

The output of the pyranometer amplifier is fed into analog input #7 on USB-6009 

Dev1 and data recorded and stored by the computer software.  In software, the amplifier 

gain A will be removed by division, and the resulting raw value in millivolts will be 

multiplied by 5000 to give insolation, G, in Wm-2. 

 

52.5
10005// 2

inin
V

A
VVmWmultiplier

G
⋅⋅

=
⋅⋅

=

 

All data produced by the status system is collected by the control system at a rate fss, 

defined as the status system sampling frequency.  Its inverse is Tss, which is currently set 

at two seconds.   

There are N control system outputs where N is defined as N = 3 + L, where L is 

the number of loads.  One of the outputs is the value of the duty cycle for the buck 

converter PWM signal.  This value is usually spoken of as a percentage, with a minimum 
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of 0 and a max of 100.  In the PC software it is stored and manipulated as a floating point 

number, with values between 0 and 1.  When transmitted serially to the PWM-producing 

microcontroller the value is first represented as an 8-bit unsigned binary number.  The 

microcontroller code provides the proper mapping of the unsigned number to the desired 

duty cycle of the PWM output.  The remainder of the outputs produce binary on/off 

values.  These control the MOSFET switches that dictate the flow of current in the 

system.  There is one switch each for the PV array and DC-DC converter, and one for 

each load circuit. 

2.2 SuPER Load Characterization 

2.2.1 Television 

The television is the simplest of all loads considered.  The unit which SuPER uses 

is a 12V DC black/white GPX portable TV/radio, equipped with a 5-inch screen.  It 

draws a continuous current of between 600 - 700mA (8W).  The television circuit is 

identified on the prototype as circuit #2. 

2.2.2 Cooler 

The Coleman 12V DC cooler was chosen to represent a typical low-power (60-

70W) refrigeration device that might be used by families who have had no previous 

access to in-home refrigeration.  The cooler load is identified as circuit #3.  This 

particular model (5644) has a volume of 40 quarts, and uses a Peltier element to cool the 

interior down to about 40° F below ambient temperature.  An empty cooler reaches this 

state in three hours.  The power cable is equipped with a 7.5A fuse.  For SuPER we wish 

to study methods of limiting the power needed in operating the cooler. 
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It was hoped that the cooler would require less power to maintain a minimum 

temperature than would be needed to reach it.  Tests done with an empty cooler have 

shown this to be true.  Figure 2.7 illustrates the decrease in power consumption over time 

for the cooler.   
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Figure 2.7 – Cooler Power Demand 

 

However, an empty cooler being largely worthless, we choose to characterize it while 

under a “load” of eight quarts of water.  It will likely be undesirable to invest the power 

necessary to bring eight quarts of water down to the minimum temperature.  We will 

simulate and test towards maintaining the water between 20° and 30° F below ambient 

temperature.  Note that due to the Peltier element, the difference in internal and ambient 

temperature is the key parameter [11]; the minimum interior temperature that can be 

achieved is highly dependent on the external temperature.   If possible, it would be 

preferable to be able to control the temperature assigning some initial value, without 

sampling internal air or water temperature, and make control decisions purely based on 

the time needed for cooling.   
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Figure 2.8 shows the cooler air and water temperature over time as the cooler 

runs, as well as the difference between those and the ambient temperature.  In this case, 

the ambient temperature experiences relatively small fluctuations.     
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Figure 2.8 – Loaded Cooler Temperature Study 

 

Most intriguing is the linearity with which the water temperature decreases.  The 

downward rate of change of water temperature is approximately .05°F per minute.  This 

linearity is also observed in a warming scenario; chilled water is placed inside the cooler, 

which contains air chilled to the same temperature.  Equalization with ambient 

temperature (which, again, is fairly constant) has been calculated to be approximately 

.008°F per minute.  The ratio of warming rate to cooling rate is .16.  Thus, to maintain an 

average temperature, power theoretically need be delivered to the cooler for only 8.3 

minutes of every hour.   

This characterization is fine for very gradually changing external temperatures, 

but proves all but useless for rapidly changing temperatures.  Figure 2.9 shows the results 

of a study done in which the cooler experiences three 60-minute power cycles, each nine 

minutes on and 51 minutes off.   
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Figure 2.9 – Cooler 60-minute Cycle Temperature Study 

 

The cooler on times can be identified by the corresponding drops in interior air 

temperature.  One problem with this cycle period is the time taken for the interior air 

temperature to drop low enough to begin to cool the water, a sort of “setup time”.  It is 

likely more efficient to increase the cycle period so that setup times are a smaller ratio to 

total cooling time.  A second study, with measurements plotted in Figure 2.10, extends 

the cycle period to 725 minutes.  The cooling period occurs in the first 100 minutes. 
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Figure 2.10 – Cooler 725-minute Cycle Temperature Study 

 

At time 538 minutes, the cooler was brought indoors to provide a more constant external 

temperature, for reference and comparison purposes.  The much more steady temperature 

difference rate of decline from that point onwards is clear.  It can also be observed that 
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the quickly increasing external temperature has a high impact on the rate of change of 

internal cooler air temperature when the cooler is unpowered.  Maintaining some average 

difference between ambient and water temperature is difficult under variable conditions.  

If the cooler is to be run out of doors, it may be necessary to power the cooler much more 

often than desired.  If that is accepted, perhaps some power savings can still be achieved 

while measuring only the ambient temperature and compensating by adjusting run times.   

2.2.3 LED Lights 

One of the primary functions of SuPER will be to provide a few hours of night-

time lighting for the family home.  The necessary energy will be drawn from the battery.  

It is expected that the control system will ensure that the day ends with the battery in a 

high SOC in anticipation of the energy requirements for lighting.  It is essential however 

to find a type of lighting that provides high output, usually measured in lumens, at 

minimum energy use.  To this end, SuPER will rely on the emerging LED lighting 

industry.  The LEDs available today use about 3W of power and generate around 100 

lumens each [12].  Unfortunately, operating at this wattage is inefficient.  The SuPER 

prototype will instead operate the lights at a tad over 1W apiece.  Four such LEDs will be 

allocated for use for the immediate future, requiring approximately 4.5W of power.  The 

lights are designated as circuit #4.  

2.2.4 Laptop 

System status and control is run on a Dell Inspiron B120 laptop, chosen for its 

low cost (under $500).  Specifications for the device declare it to be a 60W max system, 

drawing about 3A at about 20V.  A converter is thus required for the 12V SuPER system 
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bus to which the laptop will connect.  A Lind Electronics Model # DE2035-966 converter 

was purchased from Dell; this converter will turn a 12-32V DC input into a 20V DC 

output at a maximum of 3.5A.  It is equipped with a 15A fuse.  Figure 2.11 shows the 

converter. 

 

Figure 2.11 – Lind Electronics Model # DE2035-966 Converter 

 

Information about the power and battery management system on Dell’s laptops is 

proprietary, and therefore not available to the public.  However, regular observation of 

the system in operation reveals some useful trends.  The approximate battery SOC while 

charging from a wall outlet is recorded using the Windows XP battery meter, and 

displayed against time in Figure 2.12. 
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Figure 2.12 – Laptop Battery SOC Under AC Power 

 

When powered by the SuPER cart, without its internal battery, the laptop draws 

approximately 2.5A (as considered from a system perspective and hence concomitant to a 

potential of 12V).  With the laptop battery inserted, the behavior seems to change relative 
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to the SOC of the battery.  A depleted battery will perforce need to be charged, so the 

laptop will draw enough current to run the device and charge the battery in tandem.  The 

laptop circuit will in this case draw two extra amps, for a total of 4 to 4.5A, which is 

closer to the specified maximum power requirement.  With enough time passed to 

anticipate a fully charged internal battery, it is observed that the laptop has again reverted 

to a 2.5A current draw.  Recorded data (see Figure 2.13) shows that there is a gradual 

drop-off in the current drawn by the laptop.  Using the data from Figure 2.12, we can 

predict the time at which the battery reaches approximately 80% of charge capacity. 
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Figure 2.13 – Observed Laptop Power Needs Under Solar Power 

 

This is fairly consistent with the known charging current requirements for lithium-ion 

batteries [13].  Lithium-ion batteries do not require a low-current trickle or float charge, 

and in fact may be damaged by such.  Thus, the charge cutoff current is to be 0A.  Figure 

2.14 gives the shape of the expected lithium-ion battery charge current over time. 
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Figure 2.14 – Lithium-ion Battery Charging Current as a Function of Time 
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For the vast majority of the operation time of the system, the laptop will be a 30 – 35W 

load rather than a 54 – 60W load.  This issue will be addressed in simulation by providing 

a variable load controlled by a laptop-specific function block.  The mechanism is present 

for future use, but at this stage of development of the model the laptop battery is treated 

as always fully charged. 

As the laptop is the intelligence of the entire SuPER prototype system, it is 

necessary that it be powered throughout the operating period of the system.  It will thus 

be the last load to be disconnected from the system.  We will not be relying on the 

laptop’s internal lithium-ion battery for any sort of sustained operation of the status and 

control system at this time.  It will of course provide a small amount of power-on current 

for the laptop when initiating system operation from a shut down state, and will only be 

depended upon for that purpose. 

2.2.5 DC Motor 

For the SuPER prototype, the team has equipped a ¼ horsepower, 12V permanent 

magnet DC motor which will be used to represent the water pump load.  It is anticipated 

that this is the most demanding load to be powered by SuPER.  Jennifer Cao’s senior 

project report [14] records operational data for the motor, also echoed here in Figure 

2.15. 
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Figure 2.15 – Motor Load Power vs. Torque 

 

For the SuPER prototype testing we will plan on operating the motor at a constant 8lb·in 

torque, which loads the motor to near the maximum rated power output.  This is also a 

more efficient use of input power than operating at a lower torque.  A dynamometer is 

used to load the motor.   

On starting up the motor, there is a large amount of current drawn for a very short 

time period known as the inrush current, and is accompanied by a correspondingly large 

drop in battery voltage.  Frequent repetitions of such current draw can have adverse 

effects on battery life over time if the battery charge is not maintained at a high level 

[15], and for this reason senior Joe Witts explores the advantages of including an 

ultracapacitor in the system for his senior project [16].  He reports that such a 

configuration provides negligible assistance in the case of infrequent motor activation.  

Cycled motor use, with a period on the order of a few minutes or less, can cut battery 

energy costs down significantly.  A 58F ultracapacitor manufactured by Maxwell 

Technologies was purchased and will be introduced into the system.  The motor load is 

circuit #6 on the prototype. 
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2.3 Battery Management 

The SuPER prototype battery is a 12V valve-regulated lead-acid (VRLA) unit 

manufactured by East Penn (or Deka), rated at 98Ah for 20 hour discharge.  The SOC of 

a lead-acid battery is a percentage representing the ratio of charge remaining to total 

battery charge.  Its inverse is the depth of discharge (DOD).  Determining the SOC for 

VRLA batteries while connected to a load has always been a difficult problem.  The 

simplest, most typical way to make this determination in practice is to measure the open-

circuit voltage (Voc) of the battery, due to a nearly linear relationship between Voc and 

SOC for lead-acid batteries [15].  This method provides a reasonably accurate 

assessment, however, it is unrealistic for many systems because a true Voc can only be 

attained after all current flow in and out of the battery has been suspended for 24 hours 

[15].  This is not an option for the SuPER project.  The general approach to this problem 

is to use frequent measurement techniques to estimate the SOC in software.  Methods to 

this end are proposed by Vairamohan in [17], Duryea, Islam and Lawrence in [18], and 

Castaner and Silvestre in [19]. 

The SuPER team has chosen to use the model in [19] designed for PSpice but 

modified by team member Tyson Den Herder for Simulink as his senior project [20].  

This model is divided into charge and discharge mode and provides a SOC estimation 

using the battery energy balance equation.  Upon integration of the student-designed DC-

DC converter, it is anticipated that this model will be ported to C code on the status and 

control laptop.  In [21] Fasih provides some vindication of the model and methodology.  

Like SuPER, Fasih also made use of Hall effect current sensors and NI DAQ hardware 

for his measurements. 
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One shortcoming of the model in [19] is that it disregards the non-trivial impact of 

temperature on the battery state.  Also, Castaner and Silvestre mention that the model 

realistically should be restricted to use for a SOC within a range of 30-80% of capacity, 

for which it will provide the best estimates.  This provides a problem for SuPER, as we 

desire to always maintain as high a SOC as possible.  The approach taken to this matter is 

detailed in chapter four. 

Tal’s thesis [2] Appendix B discusses the way battery charging is handled by the 

Outback MX60 converter.  The device relies solely on PV and battery voltages for its 

calculations, as we will do with the Phase 1 system.  Our goal will be to mimic the 

operation of the MX60 with our converter.  The MX60 is a very expensive (and efficient) 

piece of hardware that was designed to handle much larger amounts of power than that 

associated with the SuPER prototype [22], [23].  It has three primary charge states:  bulk, 

absorb, and float.  While in the absorb stage, the MX60 gradually reduces current over 

time, and assuming plenty of available current will run approximately one hour.  The 

battery documentation prescribes charging voltage levels for bulk and float stages (Figure 

2.16), but makes no mention of an absorb stage. 

Table 2.1 – Deka Battery Charge Voltage Guide [15] 
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The MX60 is programmed by the user with these voltage levels.  The absorb stage 

is entered immediately after the bulk charge stage.  Absorb and float stages are both 

employed only when the battery is in a high SOC.  The primary concern for battery 

integrity is avoiding overcharging, which is the condition of supplying charging current 

when the battery is already at 100% SOC; hence the different charging stages 

recommended by the manufacturer [15].  For simplification of the SuPER status and 

control system, we will abandon the absorb stage and utilize only bulk and float charging.  

In discussions with Tal, he indicated that this was a reasonable simplification. 

2.4 Phase 1 

The closed-loop version of the system, in which all modules (besides the PV 

array, battery, and laptop hardware) are designed and created at Cal Poly, is called the 

Phase 1 system.  Figure 2.17 is the Phase 1 block diagram.  The SuPER team’s goal was 

to complete this phase by March 2007.  Critical to success in reaching Phase 1 is the 

implementation of a locally designed and built DC-DC buck converter specific to this 

application.  The MPPT control would then be moved to the status and control PC.  Two 

previous efforts at constructing a functional converter have already been made and did 

not succeed.  Perhaps the SuPER team had underestimated the difficulty in implementing 

such a device for this high current application.  Seniors Robert Casanova and Joe Shein 

began new efforts to develop the converter in fall of 2006.  A second effort by seniors 

Thaddeus Guno, Koosh Shah and Kunal Shah using an alternate approach commenced in 

early 2007.   
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Figure 2.16 – Phase 1 Block Diagram [2] 

 

The specifications given for the converter, derived from PV array and battery 

characteristics are: 

Table 2.2 – DC-DC Converter Specifications [2] 

Parameter Value 
Input voltage wide range, 0 to 40V 
Input current 4.75A max 
Max power 150W, 80% efficiency target 
Output voltage 11.5 – 14V 
Output current 13A max 
Switching frequency 500 kHz 
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See section 5.2.2 in [2] for more details on the specifications.  Guno, Shah and 

Shah are designing a converter from the ground up [24], and their efforts will include 

layout of a high-current PCB.  The 500 kHz PWM signal for this converter is sourced by 

a microcontroller, and some of the difficulties with this approach involve proper marriage 

of this signal to the MOSFET switch.  Casanova and Shein are using an entirely different 

method [25].  SuPER has been provided with dual 75W buck converters as a donation 

from Linear Technology.  These converters have a built-in PWM signal generation chip, 

which uses a resistive feedback line to maintain a constant 12V output.  Some 

modifications were necessary to apply the device to SuPER, as the output cannot be 

constant due to the battery and loads.  It was theorized that using different values of 

resistors on the feedback line would alter the response of the PWM generator chip and 

could be used to adjust the output voltage of the converter.  Casanova and Shein proved 

this true, and a Maxim digital potentiometer (MAX5529) controlled by a two-wire serial 

interface is used to provide the changing resistance.  Its 64-tap configuration will allow a 

1.56% duty cycle resolution.  Control of the potentiometer will be via the digital output 

ports on the USB-6009 device.  Code written to communicate with the potentiometer 

(potcomm.c) has been tested successfully. 

Perhaps the most useful of the proposed power sinks for SuPER, the LED lighting 

remained an untouched matter through the summer of 2006.  LED lights are a continually 

evolving (and also pricey) technology; nevertheless, the Phase 1 system provisions their 

inclusion.  The lights are the final of the five proposed loads the prototype will service in 

these experimental stages, and senior Joey Zukowski was tasked with equipping the 

devices for SuPER at highest energy efficiency.  

 28



An additional Phase 1 goal is the development of a user-independent control 

system which derives maximum use of each load while optimizing the life of the battery 

and preventing overcharging.  Essential to the development of an optimal control system 

is a thorough understanding of system behaviors under a variety of conditions.  It is 

therefore desirable to simulate the system and create a platform upon which control 

schemes can be developed, assessed, and adjusted as necessary.  This ambition became 

increasingly important to the project as it became clear that the integration of the DC-DC 

converter would not be reached on schedule.   

As mentioned previously, there was a misstep in plans for handling the system’s 

current requirements on the switch board in the Phase 0 system.  For a completely 

operational Phase 1 system, the issue must be solved.  The team also determined to take 

advantage of these efforts to simultaneously increase the modularity of the system 

components; specifically, it would be valuable to physically separate PCBs of different 

purposes and current levels. 

As summarized in Table 2.3, besides the work on the ultracapacitor, seven 

parallel efforts were made from October 2006 through March 2007 to reach the Phase 1 

plateau.  Some of the work by these Cal Poly seniors will require the inclusion of more 

digital control system outputs in the near future.  Zukowski will develop a DC-DC 

converter to step down from the 12V bus voltage and deliver about 4.5W to four LEDs.  

The PWM will also be transmitted by the PC through the PIC and managed by voltage 

and current monitoring code, in order to achieve maximum efficiency with the LEDs.  

The PIC can provide two PWM outputs if need be.  For immediate integration and 

testing, a purchased static-output buck converter will provide satisfactory output.   
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Table 2.3 – 2006-2007 SuPER Project Student Contributions 

Project Student Contributors 
DC-DC converter development 
(device modification)  

Robert Casanova 
Joe Shein 

DC-DC converter development 
(computer-controlled)  

Thaddeus Guno 
Koosh Shah 
Kunal Shah 

High current PCB development, 
thermocouples 

Shane Murphy* 
Juan Uribe* 

Pyranometer integration Slavic Orzhakovsky* 
High current PCB development Kaha Sariashvili 
Simulation and software control Tyler Sheffield 
LED lights subsystem integration Joey Zukowski 
Ultracapacitor integration Joseph Witts 
* denotes independent study, as opposed to senior project contributors 

 

Though his efforts are not associated with the Phase 1 objectives, Joe Witts will add an 

ultracapacitor between the battery and the loads and will need control signals for three 

switches to manage the charging and discharging of the capacitor.  The main converter 

built by Casanova and Shein will require two digital outputs for a serial interface to a 

digital potentiometer. 
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Chapter 3:  Prototype Software 
 

3.1 Interface 

The status and control system for the Phase 1 prototype is all managed on a Dell 

Inspiron B120 laptop computer.  This machine is equipped with an Intel Celeron M 1.4 

Ghz processor and 256 MB of DDR SDRAM.  With a 40 GB hard drive, it is more than 

sufficient for SuPER’s computing power and data storage needs. 

The laptop executes all data acquisition and control code over a Red Hat 

Enterprise Linux WS 3 operating system.  A few factors figure into the decision to use a 

Linux platform.  First, one of the goals of the SuPER team is that all software for this 

project be developed as open-source and protected under a general public license (GPL).  

This will ensure that the work will be available for modifications and expansion, as well 

as learning purposes, for any who may want to take advantage.  Second, Linux facilitates 

C development in general better than other platforms, and for this project the ease of 

access to system-level (kernel) function calls is of paramount importance.  Thirdly, the 

project team at the time felt most comfortable developing in that environment due to 

significant previous experience with Linux. 

NI provides a well-documented C application programming interface (API) to 

accompany their multifunction data acquisition (DAQ) devices [26].  The name of the 

package is NI-DAQmxBase 2.1.  This API consists of C functions that provide direct 

access to and control over the devices.  With these functions the user can, for example, 

define and start analog input sampling tasks and set digital output values.  Appendix A, 

taken from [27], outlines the API. 

 31



The team encountered some trouble with Linux in regards to the integration and 

interface for the USB-6009 devices, and the lessons learned are mentioned in passing 

here.   

The Targus 4-port hub uses USB 2.0 drivers, so it is essential that the latest 

version of the Linux kernel be installed on the host machine.  Version 2.4.21-37 is not 

equipped with the proper drivers and therefore version 2.4.21-47 must be installed.  

Before halting execution of the interface software process, all tasks assigned to the 

devices must be stopped and cleared.  Bypassing this step causes a glitch that will result 

in Linux losing the device identifiers; restoring functionality requires a device hard reset 

(disconnecting the devices from their USB power source/host).  Unfortunately, the 

example code that NI ships with the devices, and upon which the SuPER code was built, 

seems to disregard this peculiarity.  As the NI code is executed, the user receives 

instructions indicating that the process may be terminated by using the ‘ctrl-c’ command.  

This is the universal Unix process halt command.  This command does not allow the 

process to exit gracefully, but ends its life by kernel override.  As a result, the kernel 

somehow loses communication with the DAQ devices.  The problem was remedied by 

adding code to alter the execution shell to return characters byte-by-byte from stdin with 

each key press.  When a ‘q’ is pressed, the loop catches it and is able to stop and clear all 

active tasks before halting the process.  See Table 3.1 for details on the USB-6009 device 

errors encountered by the SuPER team.   
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Table 3.1 – Known USB-6009 Errors 

Error Implication Action Required 
Shell message:  Device 
identifier invalid 

Linux has lost track of the 
DAQ devices 

Hard reset of DAQ devices 

Shell message: Physical 
channel specified does not 
exist on this device 

No known cause Hard reset of DAQ devices 

Shell message:  Onboard 
device memory overflow 

Host processes have taken 
away system resources from 
the USB-to-PC data transfer 
(or less likely, the sample 
rate is too high) 

Close all other executables, 
and do not run anything 
besides status and control 
program 

Sensor readings are bogus, 
such as large negative 
temperature values  

The device identifiers have 
been mixed up 

Hard reset of DAQ devices 

 

3.2 Functional Overview 

All initialization and parameterization of NI-DAQ tasks is handled in function 

main of the SuPER code, which is found in contAcquireNChan.c.  The code enters an 

unterminated while loop that repeatedly reads the values out of the storage buffers 

recorded by the USB-6009, and displays them onscreen.  Thousands of values are loaded 

by the USB-6009 into the buffers, and the NUM_TO_OUTPUT definition fixes the 

number of samples that are extracted (NUM_TO_OUTPUT must be less than or equal to 

the integer bufferSize).  The extracted values are all averaged to formulate the display 

quantity.   

The loop is executed at the system sample rate fss.  At the beginning of each loop 

cycle, the buffers are checked to see if the write time has been reached (as defined by 

TIME_FACTOR, in minutes).  The values must be periodically written to the hard drive 

so as not to be lost.  The written values consist of all samples extracted prior to 

averaging.  Thus, the written files contain NUM_TO_OUTPUT / Tss samples per sensor 

for each second of run time and the total number of samples per sensor in the file is 

TIME_FACTOR * 60 * NUM_TO_OUTPUT / Tss. 
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Hard drive accesses are expensive operations, and it is important not to delay the 

time-sensitive loop commands so as to avoid the risk of device memory overflow.  

Therefore, main is forked so that a child process may take care of the file I/O and the 

parent can return promptly to data reading.  Sensor data is written to the hard drive in 

comma separated value (.csv) files.  The files are named with date and time included, e.g. 

“SuPER Wed Jan 10 10:44:30 2007.csv” and stored in a brother folder to the source code 

entitled data.  To ease the manipulation of these large amounts of data, an Excel macro 

has been created that consolidates the file into one minute samples.  See Appendix B for 

an introduction to this macro. 

After each data set is observed and averages calculated a call is made to pnopal.c 

for running the control algorithm.  pnopal.c contains the MPPT algorithm and sends the 

new duty cycle value to the PIC by calling commpic.c.  commpic.c is the code that 

provides serial communication from the PC to the UART on the PIC.  Figure 3.1 is a 

software flow diagram that summarizes all the simultaneous processes in execution when 

the status and control software are running. 
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Figure 3.1 – SuPER Software Flow Diagram 
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3.3 Control 

The diagram of Figure 3.2 details the locations of all Phase 0/1 control inputs and 

outputs. 

 

Figure 3.2 - SuPER Status and Control Interface Diagram 

 
MPPT is accomplished with the simple and commonly-used perturb and observe 

(P&O) algorithm.  The algorithm is presented in detail in Aki Oi’s thesis [28] section 

3.5.1, but briefly outlined here.  The purpose of the algorithm is to maintain an 

impedance seen by the PV array that will cause the array to output power at peak 

capability.  This is done by adjusting (perturbing) the DC-DC converter duty cycle at 

periodic intervals and monitoring the resulting array power output, through current and 

voltage measurements.  A negative change in the power output will cause a reverse in the 

direction of the perturbations; a positive difference has the opposite effect.  Figure 3.3 

shows the location of the maximum power point on the I,V curve of the BP150SX solar 

panel at peak output. 
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Figure 3.3 – BP150SX I,V and Power Curves [28] 

 
The status system sample period Tss (currently set at two seconds) puts a 

maximum rate on the control algorithm execution.  Note that this is entirely different 

from the NI DAQ device A/D sample rate, which is much higher.  Observation of the 

performance of the MX60 converter shows rapid response times under quickly changing 

conditions.  The SuPER team attempts to mimic this capability, and will also run the 

control algorithm at the maximum rate.  It is anticipated that the host machine will have 

adequate time to run the few necessary floating point multiplications and divisions 

between samples and that computational time overruns will not be an issue.  The DC-DC 

converter transient response, discussed in more detail presently, will not be an issue at 

this rate. 

The prototype currently makes use of a PIC 18F4320 microcontroller which can 

provide a 500 kHz PWM output.  This is an upgrade from the 50 kHz signal provided by 

the original Phase 0 hardware, a PIC 16F877A.  The PIC code is written in assembly 

language and compiled with the MPLAB development kit provided free of charge by 
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Microchip.  Programming is achieved with the K128 USB 40-pin programmer from DIY 

Electronic Kits (http://www.kitsrus.com/pic.html).   

The laptop is not equipped with a serial port, so the connection to the PIC is 

accomplished via a USB to serial conversion cable.  The cable manufacturer is unknown, 

but the conversion chip is a product of Prolific Technology Inc; the model number is 

PL2303.  Use of this cable in Linux requires driver installation and configuration.   

 
 

Figure 3.4 - USB-Serial Cable with PL2303 Chip 

 
It was necessary to develop a simple communication protocol for all serial 

transmissions between the PC and the PIC.  The communication is largely one way, as 

the PC issues all commands and accompanying values.  The microcontroller sends no 

data to the PC, but does respond to successfully received commands and values by 

returning an exclamation point character (!).  UART serial communication is byte-

oriented, and for ease of implementation all commands and values are eight bits in length 

or less.  An explanation of the communication protocol can be found in Appendix C. 

The battery model code from the Simulink model has been ported to the laptop, in 

the form of a function called batt_voltage in contAcquireNChan.c.  It currently monitors 

battery current flow to estimate the actual battery SOC in real-time.  Output is written 

with frequency fss to Super_Output.csv. 

 38

http://www.kitsrus.com/pic.html


The prototype control software is largely incomplete as some of the hardware 

goals for the end of March 2007 were not attained.  The only form of control currently 

implemented in the prototype software is the MPPT algorithm; even so the generated 

output is actually of no practical use without a DC-DC converter.  The prime resource for 

developing and testing control algorithms, then, is currently the Simulink simulation. 
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Chapter 4:  MATLAB Simulink Model 

4.1 Model Overview 

The new Simulink system model builds upon the foundation established by Tyson 

Den Herder in his senior project [20], but attempts to reach far beyond its limits and uses 

a different development approach.  The primary difference between Den Herder’s efforts 

and what is to be accomplished in this thesis is a matter of construction, detail, and scale.  

In the conclusion of his report, Den Herder makes some observations and 

recommendations on improving the model, all of which are addressed in the model 

presented here.  Figure 4.1 is a view of the entire SuPER Simulink Model.   
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Figure 4.1 – SuPER Simulink Model 
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Each component of the model will be presented in detail.  For orientation 

assistance, a generalized map of the key components and connections in the model is 

offered in Figure 4.2.  Red lines represent electrical connections, while blue lines are 

purely inter-block signal lines. 

 
 

Figure 4.2 - Simulink Model Map 

 
In Simulink there are three methods of expressing the functionality of operational 

subsystems, or modules:  component blocks, mathematical function building blocks, or 

MATLAB code (also C/C++,etc).  Den Herder used the function block construction 

method for the battery, control and converter subsystems.  To assist the Simulink model 

in better reflecting its real-life counterpart, the converter was recreated by Dr. Harris 

using the component blocks available in the SimPowerSystems package.  In a nutshell, 

this means building the converter out of capacitors and inductors, etc., rather than 

representing it with a collection of mathematical function blocks.  For modularity, 

reproducibility, and optimization purposes the battery and control modules were remade 

as S-function blocks of code.   

4.1.1 Design Approach 

Figure 4.3 shows the typical configuration of a simple buck converter. 
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Figure 4.3 - Simple Buck Converter 

 
The DC-DC converter MOSFET switch is driven by a 500 kHz PWM signal, a 

rate defined by the capabilities of the PIC 18F4320.  The energy storage components (an 

inductor and capacitor) are the key converter parameters chosen based on the desired 

response of the converter.  The inductor value (L) is .93mH, calculated using the equation 

for the desired maximum converter output current, from [29]: 
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D is the duty cycle as a fraction of value one, fsw is the switching frequency, and R the 

load resistance.  The capacitor size (C) is determined by the desired ripple on the output 

voltage (ΔVo), and found for this model with the help of some experimentation to be 3μF.  

This is the relationship, from [29]: 
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⋅⋅
⋅
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In a typical buck converter configuration with resistive loads, the potential 

produced by the front-end source, Vs, is “bucked” to a desired average output Vo by 

altering the switching duty cycle accordingly.  The relationship is  
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For this application, the output voltage is anchored to values near 12V, on a range 

of about 10 – 14V, by the battery.  Duty cycle adjustments will instead reflect on the 

converter input voltage, which is the voltage Vpv at the PV array terminals.  This voltage, 

in conjunction with the temperature and available insolation, determines the amount of 

current output by the array.  Figure 4.4a shows the voltage that is seen by the array as a 

function of the duty cycle in the Simulink model of SuPER.  The relationship is not 

linear.  This plot shows curves for three different insolation levels, all at a constant load 

of 68 W, a typical load scenario.  Alongside is an example of how the array I,V curves 

may look for these different levels.   
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Figure 4.4 a) – PV Array Voltage Response for 
Varying Insolation Levels (68W Load) 

Figure 4.4 b) – Example of Corresponding 
I,V Curves 

 
Unexpectedly, interfacing the current source to the DC-DC converter in Simulink 

presented a non-trivial problem.  The software recognizes that with the MOSFET switch 

closed, the circuit topology presents an inductor in series with a current source.  This is 

an illegal configuration as the inductor current would not be independent.  It is therefore 

necessary to include some circuit element in parallel with the current source.  Various 

options were explored, including resistors and controlled voltage sources, but a capacitor 
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actually provides the optimum system behavior.  This is because the capacitor offers 

stability in maintaining the converter input voltage, which is used to calculate the PV 

array current.  If the capacitor is too large, the response time will be too slow and the 

voltage level will never rise; if too small, it does not provide the needed impact and the 

voltage will fluctuate far too much.  A good value for the capacitor was found by 

experimentation to be on the order of microfarads, in this case 10μF.  Thus, the Simulink 

model includes an extra 10μF capacitor on the converter input due to the manner in which 

the PV array is modeled for simulation purposes. 

Voltages and currents plotted with Simulink scopes oscillate at the switching 

frequency.  The output voltage ripple is intended to be minimized by careful attention to 

the capacitor chosen for the converter; to smooth the output to a greater extent and allow 

the developer to see some semblance of average DC values, Simulink offers two options, 

neither of which are ideal for this use.  One option is the weighted moving average block.  

Weights need to be assigned to each sample, and the number of weights determines the 

“window” size.  This makes it impractical for windows of thousands of samples, and has 

proven difficult to use in practice.  The chosen method is a reset enabled running mean 

block, whose reset period is a confirmed hazard in simulation.  The optimal period seems 

to be twice the fastest S-function block sample period.  The running mean blocks must be 

reset on the falling edge of the reset signal, so that any downsampling does not catch the 

block output early in the new mean processing, as the oscillations will result in unsettled 

sampled values. 
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4.1.2 Function Blocks 

Desiring a modular simulation model, we made prolific use of MATLAB’s S-

functions.  These are created as blocks in the Simulink model editor, but completely 

defined by MATLAB code in associated m-files.  There are a variety of S-function types, 

but the original system design was done with these particular blocks; they are known as 

Level II M-file S-functions.  The function that is to be implemented can be written in 

MATLAB language just as would be done for execution or function call from the 

MATLAB command line.  However, creating an S-function requires wrapper code 

around that function code.  Ports must be enumerated and identified for each input and 

output of the block.  The function code is placed in a separate section for determination 

of the outputs.  One drawback of these S-functions is their lack of internal memory.  In 

other words, the function is executed top-to-bottom continually with no memory of 

previous states.   

Efforts to speed up the simulation process led to a new approach to the S-

functions.  The software is greatly hampered by the need to call the M interpreter each 

time M-file S-functions are invoked.  By writing the code in C instead, and pre-compiling 

it before runtime, the simulation time can be greatly reduced.  This variety of function 

block is known as a C-MEX S-function.  Running one simulation on a 1.4 GHz machine 

for the M code blocks required 22 hours.  The same simulation on the same machine with 

the new C code blocks runs in under two hours. 

Insolation and temperature data are located in lookup tables (LUTs) as described 

in Den Herder’s senior project [20].   We will continue to use Oi’s model for the PV 
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array, as defined in his thesis paper [28].  Figure 4.5 is a diagram of this model, which 

was implemented in MATLAB code for simulation. 

 

PV_c Ipv

G

TaC

Vpv

 

Figure 4.5 - PV Array Model [28] 

 
The insolation, temperature, and array voltage are fed to the PV array S-function, 

which simply provides a wrapper for Oi’s BP150SX solar panel m-file.  For the new C 

code blocks, the solar panel code was translated to C.  The PV block outputs the current 

produced by the array, which is built electrically as a controlled current source driven by 

the S-function output.  Figure 4.6 shows the PV S-function block.   

 
 

 

Port Identity 
G insolation (Wm-2) 
TaC Temperature (ºC) 
Vpv PV voltage (V) 
Ipv PV current (A) 

Figure 4.6 - PV S-function Block 

 
Note that although the array is rated by the manufacturer at 150W peak, in practice the 

SuPER team has observed a maximum output of only 122W at peak insolation.  An 

adjusting coefficient has been added to the array code to reflect this. 

The control algorithm with P&O code for the MPPT is contained in an S-function 

block titled Control (Figure 4.7).  The Control block also requires initialization and 
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knowledge of a couple of values, as MPPT operation is dependent on the system’s 

behavior under previous outputs.  Thus, the current duty cycle (parameter DC, which is 

not to be confused with direct current voltage/current) and charge mode (cm) are 

assigned initial conditions and fed back through Memory blocks.  The charge mode 

parameter has two possible values, 1 or 2, which correspond to bulk and float charge 

stages respectively.  The stage is adjusted according to the battery voltage, Vb. 

 

control_plus_c

DC

Ipv

Vpv

Vb

cm

DCout

DCprev

Ppv

cm_out

count

 Port Identity 
DC duty cycle initialization (%) 
Ipv PV current (A) 
Vpv PV voltage (V) 
Vb battery voltage (V) 
cm charge mode initialization (1,2) 
DCout new duty cycle (%) 
DCprev old duty cycle (%, for debug) 
Ppv PV power (W, for debug) 
cm_out old charge mode (1,2)  
count mode restriction (0,1, for debug)  

Figure 4.7 - Control S-function Block 

 
In the switch control S-function block, load operation decisions are made.  For 

this early version of the control system, a table is created that holds the on and off times 

for each of the five loads.  The code then uses the system time to flip the load enabling 

switches on and off.  There is a scenario selection input that lets the model user identify 

which load time table to use.  This block is shown in Figure 4.8. 

swcontrol_c
scenario

stime
switches

 

 

Port Identity 
scenario load scenario identifier (0:13) 
stime system time (sim minutes) 
switches[0:4] load control output (0,1) 

Figure 4.8 - Switch Control S-function Block 
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Of special relevance to SuPER is the battery model in use.  Den Herder’s 

simulation uses the PSpice model from [19], adapted to Simulink.  Table 4.1 identifies 

the parameters associated with this model. 

Table 4.1 – Battery Model Parameters 

Parameter (Units) Significance Type 
k (%) battery efficiency constant 
SD (h-1) self-discharge rate constant 
ns number of series 2V cells constant 
SOC1 (%) initial SOC percentage constant 
SOCm (Wh) battery capacity variable 
SOC (Wh) estimated remaining energy variable 
β (%) SOC / SOCm variable 

I1  (A) battery current variable 

 
The model uses these parameters to predict the battery internal resistance (R1) and 

terminal voltage (Vbat) at time t.  Den Herder uses a 12V, 66Ah @ 20 hours (792Wh) 

capacity battery.  SuPER’s Deka 8G31 model is rated at 97.6Ah @ 20 hours (1171Wh) 

so the model must be updated accordingly.  The charge/discharge efficiency value, k, is 

not made available by the battery manufacturer, so following one of the examples given 

in [19] and echoing Den Herder’s choice, a conservative value of 0.8 will be applied.  

This coefficient is a multiplier of the battery current in the model SOC equation, so 

adjusting it will impact the rate of change of the SOC in both charge and discharge states, 

for charge associated with the current flow.  This parameter was not used in making 

adjustments to the battery model because of the need to account for differences in charge 

and discharge behavior. 

It is also necessary to adjust the self-discharge rate, which is provided by the 

manufacturer.  According to the specifications (Figure 4.9) the battery will linearly lose 
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50% capacity over a 16 month period, assuming it is sitting at typical room temperature 

(20ºC). 

 
 

Figure 4.9 – Deka VRLA Battery Self-discharge Chart [15] 

 
This information yields a discharge constant of 4.34e-5 h-1 (.5/11520 hours).   

Another critical battery parameter is SOCm, the total energy capacity in Wh.  

This value is a function of the current draw, and follows a somewhat logarithmic curve.  

Seven current/capacity data points are available in [30] only for the absorbed glass mat 

(AGM) version of SuPER’s gel 8G31DT.  For the gel variety, we know only that the 

capacity is 97.6Wh @ 4.88A, which is slightly less than the AGM battery.  In 

consequence we must estimate what the gel battery curve may look like, starting from the 

one known point.  Figure 4.10 shows the provided AGM curve and the estimated gel 

curve. 
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Figure 4.10 - Current vs. Capacity for AGM and Gel Batteries 

 
It was necessary to make adjustments by adding code to estimate the capacity 

SOCm for different battery currents (Ib in Simulink, equivalent to the model’s I1).  For 

currents in excess of 2A, we will use the logarithmic function derived from curve-

matching in Excel to make the estimate: 

 1435.2  )ln(I179.68-  b=mSOC ⋅ +

 
For currents less than 2A, a value of 1325Wh is used.  The battery S-function is shown 

below in Figure 4.11. 

 

batt_voltage_c

SOC1

I1

SOC2

Vbat

V1

R1

 

Port Identity 
I1 battery current (A, same as Ib) 
SOC1 SOC initialization (%) 
SOC2 new SOC (%) 
Vbat battery voltage (V) 
V1 internal voltage (V, for debug) 
R1 internal resistance (Ω, for debug)  

Figure 4.11 - Battery S-function Block 

 
The battery model requires an initial SOC, and some sort of state memory to properly 

update the battery condition throughout the simulation runtime.  The SOC is fed back 
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into the battery model input through memory blocks so that previous outputs will be held 

on the signal line.  

The creation of the battery S-function is followed by the adaptation of the model 

to the performance characteristics of the battery in use.  At our disposal is the battery 

charge and discharge test data acquired under operational conditions by Tal and 

published in [2].  It is essential to note that the authors in [19] state that the battery model 

presented is only accurate for a SOC range of 30-80%.  Model adjustments can then be 

made experimentally in an attempt to match the data recorded while the battery SOC was 

in this range.  Castaner and Silvestre provide an example of adjusting parameters to fit a 

commercial battery, but unfortunately do not explain their methodology.  Doing our best 

to follow their lead, the same parameters will be altered.   

Exactness in the battery model is not our chief concern, but some precision for the 

80-100% charge range would be beneficial as we hope to consistently maintain a high 

SOC on the battery.  The team adopted what is the perhaps the only reasonable approach 

to this issue, which is to use Tal’s data to make adjustments to the model in use for an 

alternate high SOC case.  The most difficult decision to make is how to model the battery 

in the tricky 80-90% charge range.  This is just above the model’s effectiveness range, 

and according to Tal still within the bulk charge mode breadth for the MX60 (which 

extends to approximately a 90% charge).   

The model is divided into four SOC states: 80% and below, 80-90%, 90-100%, 

and 100% or higher.  This final state, largely to be avoided, simply provides a high 

terminal voltage so that the control algorithm is able to prevent overcharging.  Shown 

here are the resulting equations for the 90-100% SOC range, within which the SuPER 
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team would like to operate the battery most of the time.  As in [19], multipliers are added 

to the R1 and SOC equations, and the V1 (open circuit voltage) equation is slightly 

adjusted.   
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See the C code in Appendix D for the equations pertaining to the remainder of the states. 

Den Herder’s implementation includes a for loop with which the model integrates 

over time to calculate the new battery SOC, and the loop was used to dictate a step size 

and rate of SOC updates.  This allows the user to start with a given SOC and find the 

resulting SOC after any period of time with the battery under some known constant 

current flow.  The for loop was removed for the new simulation, as the steady state 

current will be changing at a known rate equivalent to the highest frequency clocking 

found in the model (most likely the control block).  Since the current may, and likely 

will, change with each duty cycle adjustment we desire to update the battery conditions at 

the same frequency.  We can thus fix the integration time window to be the sample time 

of the highest frequency clock in the model, which will necessarily be the same sample 

time of the battery function. 
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The work done in characterizing the various loads under operating conditions 

allows the implementation of some of the loads as S-function blocks, containing code that 

reflects actual power demands and responses.  In the case of the cooler load, given the 

operating parameters described in chapter two, the load will be represented only by a 

resistor in this first generation of the model.  However, a function block (Figure 4.12) 

was constructed to perform the temperature adjustments constantly occurring inside the 

cooler; currently it is only effective for slowly changing external temperatures. 

 

cooler_load_c

Tdiff1

state

eTemp

Tdiff2

iTemp

 
Port Identity 
Tdiff1 initial temp difference (ºF) 
state on/off condition (0,1) 
eTemp external temperature (ºF) 
Tdiff2 new temp difference (ºF) 
iTemp internal temp (ºF)  

Figure 4.12 - Cooler S-function Block 

 
The laptop load S-function block will take as input the estimated initial SOC of 

the laptop lithium-ion battery, as well as the time under power and use a mathematical 

model derived from actual performance data to decide on the resistance of the load.   

laptop_load_c

t

LSOC

swH

swL

LSOCout

 
Port Identity 
t charge time (m) 
LSOC battery SOC initialization (%) 
swH switch for high power load (0,1) 
swL switch for low power load (0,1) 
LSOCout new battery SOC (%)  

Figure 4.13 - Laptop S-function Block 

 
The charge time port, t, is driven by a running counter which is reset upon activation of 

the laptop load switch.  The laptop’s battery management system charges the battery at a 
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nearly constant rate until it appears to begin to limit charge at around 80% capacity.  See 

chapter two for the laptop characterization. 

The available Simulink packages at our disposal do not include a variable resistor.  

Thus only two laptop current draw options are provided for the simulation: low draw for 

a full battery, and high draw for a non-full battery.  In order to approximate the total 

power needed by the load over time, the switch from high current draw to low should 

take place when the battery SOC is estimated at 90%.  At this stage of development, the 

laptop is always implemented as the lesser of these two loads as it is always considered to 

have a fully charged battery each morning.   

4.1.3 DC Motor Subsystem 

The design of the DC motor load proved to be an interesting problem.  Initially it 

was planned that Oi’s Simulink motor model should be copied, despite the fact that he 

was modeling a different motor than SuPER’s.  However, Witts was able to obtain more 

information about the motor parameters from the equipment manufacturer and in 

conjunction with experimental data was able to develop an accurate model for our motor 

in PSpice [16].  This model was then ported to Simulink, shown here as Figure 4.14. 
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Figure 4.14 - Simulink Motor Subsystem 

 
This configuration uses current-controlled voltage sources to represent back EMF and the 

torque of the load.  The torque is a constant 8 lb·in.  Algebraic loops made unit delays 

necessary for the current measurements driving the voltage sources (see section 4.2 for 

more on algebraic loops).  The simulation results are given as Figure 4.15.  These results 

are achieved using an 11.75V constant source as a power source for the motor. 

 

 

Color Identity 
cyan 
magenta 
yellow 
red 
green 

battery current (A) 
torque (lb·in) 
battery voltage (V) 
back EMF voltage (V) 
speed (krpm) 

 

Figure 4.15 - Motor Transient in Simulink (time in s) 
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The motor has near to a 500 ms real-time transient response.  Because of our need 

to speed up the simulation process, system changes are made at much faster rates.  We 

therefore cannot get accurate results using the motor model as shown in the simulation of 

the model if we desire reasonable simulation times.  For broader scope system 

simulations, we will replace the motor subsystem with a .6Ω resistor representing a 

237W load.  For an analysis of the transient response while the motor is in-system, we 

can adjust the sample times for the other subsystems in the model to allow the motor 

transient to proceed uninterrupted as it would on the prototype.  Figure 4.16 shows the 

simulated transient response.   
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Figure 4.16 - Motor Simulink Model Load Transient  

 
 
Witts will install a 58F ultracapacitor that will serve to protect the battery from deep 

current draw.  A version of the Simulink model with the ultracapacitor included was 

created and simulated.  As can be seen in the simulation results (Figure 4.17), the battery 

current does not jump up to 40A, but gradually increases; it nears the 20A steady state 

level in about 30 seconds. 
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speed (krpm)  

Figure 4.17 - Motor Model Simulation with Parallel 58F Capacitor (time in s) 

 
 

4.2 Principles of Timing and Sampling 

One of the key issues confronting the creation of a system simulation is the 

handling of the various rates of system elements such as the MOSFET 500 kHz switching 

frequency, the rate of environmental data sampling, the control system operation rate, and 

the battery and load data update rate.   We would have preferred to run the simulation in 

continuous mode with a variable-step solver for the sake of accuracy.  However, such 

simulations have proven to be far too computationally intensive and time consuming to 

be a realistic option.  A discretized simulation is necessary, but fraught with its own 

perils. 

Choosing a solver can be a frustrating issue.  Simulink has a variety of available 

continuous and discrete time solvers, and it is not always clear which one will serve the 

model’s purpose best.  Appendix E contains information on choosing solvers distilled 

from MATLAB’s user guide [31].  For SuPER, it was realized that no continuous states 

were necessary in the model and the fixed-step discrete solver was chosen; however, the 

model has matured enough now that many of the fixed-step solvers appear to be viable.  

 58



Variable-step solvers are not an option, as they do not tolerate the presence of the running 

mean blocks and choke on “mixed sample time” errors.   

There is a delicate tradeoff between the system sample time and the resolution for 

the duty cycle.  For power efficiency, we would clearly like the resolution to be as small 

as possible, but that comes at a cost.  The duty cycle resolution is the product of the 

switching frequency (fsw) and discretized simulation sample time (Ts).    

 
sswstep TfDC = ⋅

 

Increasing the sample rate comes with the cost of increased simulation time and memory 

requirements.  However, long sample times can make the duty cycle resolution too coarse 

to allow a realistic simulation, as the converter will be forced to sacrifice large amounts 

of power.  Figure 4.18 illustrates the effect that a discretized simulation has on the ability 

to differentiate between duty cycles.  The black line is the PWM signal as it would be 

output from a signal generation block.  The blue markers are samples spaced at 1/Ts, and 

connecting the markers would represent the PWM signal as it is passed to the MOSFET.  

In this case, DCstep (the duty cycle resolution) has been found to be 5%; a duty cycle of 

5% in (a) holds no surprises.  In (b) we see that increasing the duty cycle to 9% will in 

practice be the same as a 5% value.  We must increase to 10% as (c) shows in order to the 

see the change.  Similarly, in the opposite direction, (d) a 1% duty cycle is the same as 

5%. 
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(a) 

 
 
 
 
 

(b) 
 
 
 
 

(d) 

 
 
 
 

 

(c) 
Figure 4.18 – PWM Signal Sampling: a) 5% Duty Cycle  b) 9%  c) 10%  d) 1%  

 
 

In order to prevent the solver from infinitely looping on the m-file S-function 

math operations (which occurs because of the feedback inherent in the model) we were 

forced to “clock” the function by only allowing access to the mathematics on the edge(s) 

of a pulse signal.  The outputs are then only evaluated once per instance at a rate we 

specify.  For the C-MEX S-functions, a function execution sample time can be defined.  

This is accomplished by a setting on the Initialization tab on the S-function dialog boxes.  

The block sample mode is set to Discrete, and the sample time directive defines the 

“clock” period.  The PV array S-function cannot be “clocked” or sampled at a rate less 

than the discrete system sample time, unlike other S-functions, because the array would 

be unable to respond properly to the system changes which occur at high rates due to the 

converter switching frequency.   

Insolation and temperature data for a 24 hour day are stored in blocks of 1,440 

samples, supplying one sample per minute.  Since the MOSFET switches at 500 kHz, the 

discretized simulation sample rate must be at or above the Nyquist rate of 1 MHz.  

Running a simulation on such a scale yields a terrific number of data points, unwieldy for 
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the PCs we are using.  We must therefore fool the system by decreasing the insolation 

and temperature sample times artificially.  For example, we’ll take one day’s worth of 

data, but tell the simulation that it is one second’s worth instead.  As long as the transient 

response of the converter (Figure 4.19) is not interfered with, the simulation time can be 

greatly reduced.  Such a change will also affect real-time values in hours used in the 

battery SOC and load current draw calculations, so an adjusting time coefficient is 

included in those functions. 

 
 

Figure 4.19 - Discretized Converter Transient Response (time in ms) 

 
Here we are interested in the time scale; the values shown on the x-axis are 

milliseconds.  Thus, the transient response is shown to be well below 50 μs.  The short 

response allows the simulation time to be decreased significantly.  For the simulations in 

chapter five of this paper, one minute in real time is equivalent to one millisecond in 

simulated time.  The discrete system sample time and switching frequency factor into the 

speed at which the simulation can be calculated.  The chosen values result in a simulation 

that takes approximately one second in real time for each millisecond in simulation time.  

At this rate, a simulation of 24 hours of data can be completed in about 24 minutes. 

The governing factor for the control system update rate is the rate at which we 

wish to change the PWM signal duty cycle.  For the prototype, we would like to change 

the duty cycle as fast as the system sample time, Tss, which will be the maximum rate.  In 
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Simulink, since we want a real-time minute to be as short in length as possible we must 

severely cut back the number of duty cycle adjustments per minute so as to maintain the 

24 minute completion time for the simulation.   Table 4.2 holds the final values for the 

key sample times in the model: 

Table 4.2 – Final Model Sample Times 

Entity Time (s) 
System 5e-8 
Insolation/Temperature Data 1e-3 
Control Block (duty cycle) 2e-4 
Switch Control Block 1e-3 
Battery 2e-4 
Laptop 1e-3 
Cooler 1e-3 
PV array 5e-8 
Running Means 1e-4 

 
The system requires a PWM signal generation block that can dynamically modify 

the duty cycle of the signal.  There is no such block in the Simulink library so it was 

necessary to create one; the new subsystem is shown in Figure 4.20.  The duty cycle 

value is used to alter the phase and amplitude of a sinusoidal signal oscillating at the 

switching rate.  The resulting sample is fed as input to a threshold-based switch, which 

produces either a zero or a step and alternates to form a square wave output.  This 

dynamically adjustable PWM signal generation subsystem is confirmed to operate 

equivalently to Simulink’s PWM block. 
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Figure 4.20 - Dynamically Adjustable PWM Signal Generation Unit 

 
The sine function block output expression is 

 

 D)) - (.5sin(- ⋅π

.25) - 50(D2 - t  
T

2
sw

⋅⋅⋅⋅⋅ ππ

 

where Tsw is the inverse of the switching frequency (in this case 2e-6), D is the duty cycle 

value and t the simulation time.  The bias function block output expression is  

 

 

One of the problems with the earlier versions of the system which included the 

PV array, converter, and simple battery were algebraic loop errors.  These result from the 

necessity of feeding back certain values into the function blocks.  There were particular 

difficulties with the PV block; the source voltage Vs (Vpv) which is determined in part by 

the PV array current output, also serves as an input to the PV block for use in calculating 

the current.  Simulink’s help files declare: “An algebraic loop generally occurs when an 

input port with direct feedthrough is driven by the output of the same block, either 

directly, or by a feedback path through other blocks with direct feedthrough” [31].  In 

many cases, Simulink has the ability to successfully navigate through the algebraic loops.  

However, one particularly insidious problem was a simulation-halting loop calculation 
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error that would occur partway through a run and could not be foreseen.  The only known 

solution is to eliminate all loops completely with a work-around:  adding a delay on the 

feedback path (in the form of a 1/z Unit Delay block).  The amount of delay is one 

sample of the system sample time.  This much delay will not adversely affect the S-

function block output calculations, as it is negligible in comparison to the clocking rate of 

any blocks. 

Once the simulation was able to proceed without encountering loop errors, it was 

found that the simulation strained system memory resources.  The amount of data 

needing to be recorded overwhelmed our machines.  We attempted to alleviate the 

problem with severe downsampling, and eliminated all signal probing at less important 

locations.  Simulink’s downsampling blocks, available in the Signal Processing toolkit, 

allow the user to specify the downsampling ratio and offset.  Later a more elegant 

solution was discovered in the scope blocks themselves.  The scopes can be instructed to 

perform decimation on their inputs (see Appendix F).  We must see at least one sample 

for each event that alters the “steady state” of the system, since we are not interested in 

tracking the details of the transient system response.  Thus, the maximum amount of 

decimation is determined by the block with the least sample time (Ls) according to the 

following   

 

s

s

T
LDec =≤

 timesample system
periodblock shortest 

 
Of course, decimating at the maximum and running a simulation for less than Ts in 

duration will result in zero data points.  Steps for accessing detailed simulation 

characteristics via Simulink’s coverage reporting capability are found in Appendix G. 
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 At this stage, all major barriers to running a successful simulation have been 

overcome.  Though there are several minor tweaks and improvements that can be made, 

simulation results have provided encouraging validation for the usefulness of this model. 
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Chapter 5:  Observations and Model Authentication 

5.1 Exploratory Simulations 

We wish to operate all loads as much as possible, however SuPER’s ability to do 

so is dependent upon the power that can be harvested from the sun.  There are certain 

hours of the day considered peak, at which much more solar energy is available.  These 

are the prime hours for operating the more demanding loads.   

The season has not enabled us to acquire insolation and temperature data for a 

typical summer San Luis Obispo day, so for investigative simulations we use data from a 

sunny May day in Golden, Colorado (Figure 5.1); this is the same data used by Den 

Herder in his simulations [20].  Time 0 represents 6:00 AM, while time 1439 corresponds 

to 5:59 AM the following day.  All daytime plots in this chapter likewise use a minute-

based time scale, starting at 6:00 AM. 
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Figure 5.1 - Golden, Colorado Insolation and Temperature 

 

By way of comparison, Figure 5.2 shows insolation and temperature data for a partly 

cloudy March day in San Luis Obispo, typical of the majority of the month.  Almost 10 
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daylight hours are represented here.  Peak insolation for these March days appears to be 

around 420 minutes (13:00). 
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Figure 5.2 – San Luis Obispo Insolation and Temperature 

 
For the control system it is essential to be able to distinguish between periods of 

differing levels of insolation, and this is done primarily by monitoring the power 

produced by the array.  Despite the fact that for development purposes the insolation 

measurements are available to the control system, it is not anticipated that an installed 

system will be accessorized with a pyranometer.  Thus, control decisions will not actually 

be made based on measured solar insolation.  Of paramount importance to the project is 

extending the life of the battery, so the two key factors in load operation will be battery 

SOC and power produced by the array (Ppv), which is directly affected by the actual 

insolation level.  

Note that the prototype uses a laptop for all status and control operations, so this 

will be taken into consideration for all simulations.  Thus, it is presumed that the laptop 

will be drawing power during all daylight hours during which a load might be operating, 

and any nighttime hours during which it is planned to run other loads (particularly lights).  
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We will operate under the assumption that the laptop’s on/off state is controlled 

intelligently by an external entity, such as a human user. 

There are many questions the simulation can answer for us, which we can then 

verify through prototype operation.  For example, it will be important to know how long 

the LED lights can be run in the evening, given the stipulation that the battery should be 

able to be recharged to full capacity the following day.  The Figure 5.3 plot shows the 

result of four simulations, each representing some number of hours after sunset for which 

the LED lights are powered.   Insolation is shown for perspective.  Note that time 0 in this 

case does not represent 6:00 AM, but represents one hour before sunset instead. 
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Figure 5.3 – Nighttime LED Operation Simulation 

   
As the lights are powered for a longer period of time, the next morning must 

begin with less available battery charge and more time is required for the battery to reach 

full capacity.  The slight dip in the early morning SOC shows an hour or so passes before 

the sun alone provides enough energy to power the laptop.  Also, the overcharging 

protection code, dependent upon the battery voltage, is the cause of the slight fall in SOC 

at the end of the day. 
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As the heaviest load, the motor will only be operated in daylight and for a short 

time.  For the sake of argument, let us run the motor for one continuous hour per day.  

The Simulink model can help determine when the most favorable hour for motor 

operation falls during the day.  It may be tempting to assume that running the motor at 

peak insolation (approximately 13:30 to 14:30) is the best option.  However, it may prove 

wiser to operate the motor in the morning hours and take advantage of the afternoon sun 

to recharge the battery.  Figure 5.4 is a plot displaying the battery SOC over the course of 

the day for different hours of motor operation. 
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Figure 5.4 – Motor Operation Simulation 

 
We wish to drain the battery as little as possible, and still be able to recharge it fully 

before the day is through.  According to these simulation results, the hypothesis may 

prove correct.  Operating the motor at around one to two hours before peak insolation 

should only deplete the battery to a little below 92%, and enough sunlight time will 

remain for a full recharge.  The inconsistency in the recharging curves of these various 
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scenarios can be attributed to the difficulty in modeling the battery while in the current-

limiting float charge stage. 

5.2 Result Validation 

The next step towards proving the value of the simulation is to compare actual 

prototype system measurements to simulated versions of equivalent operating conditions.  

The preliminary exploratory simulations have assisted in defining what kinds of tests 

should be run.  This first case illustrates the three-hour nighttime lighting situation in 

which the laptop alone is run for one hour with the lights joining for the final two.  The 

data of Figure 5.5 is the battery voltage and current taken from the status system 

measurements. 
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Figure 5.5 – LED Light Two-Hour Measurements 

 
The early aberrations are likely due to the laptop battery taking on a small amount 

of charge.  Figure 5.6 shows the results of simulating the same scenario. 
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Figure 5.6 – LED Lights Two-Hour Simulation 

 
The simulation predicts higher battery current draw and voltage.  The lights draw a 

relatively small current, and a heavier load will be a more interesting case to examine.  

The prototype was placed under test with the motor load on March 19th, 2007 – a fairly 

sunny day with intermittent cloud cover.  Shown in Figure 5.7 is the insolation and 

temperature data for about five of the daylight hours.   
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Figure 5.7 – March 19th 2007 SLO Insolation and Temperature 

 
The plot of Figure 5.8 shows the battery status measurements taken by the SuPER status 

system on the 19th of March.  The motor was run from 11:30 to 12:30. 
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Figure 5.8 – March 19th 2007 Motor Operation Measurements 

 
The insolation and temperature data taken during the day are fed into the Simulink 

simulation.  The resulting estimated voltages and currents are shown in Figure 5.9. 

 
 

Figure 5.9 – March 19th 2007 Motor Simulation 

 
Much of the “noise” that appears in the simulation plots is largely due to the coarse duty 

cycle resolution of 2.5%.  Improved resolution, which would require greater simulation 

time, would result in much more accurate levels.  However, the general trends over time 

can clearly be seen.  These are very promising results, in spite of the fact that we do not 

have a proper model for the Outback MX60 converter or its control algorithm. 
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Figure 5.10 shows, for the same time frame, the battery SOC as predicted by the charge 

estimation code running on the laptop as compared to the simulation SOC estimate. 
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Figure 5.10 – March 19th 2007 SOC Estimates 

 
In reality, the measured battery Voc taken 24 hours after operation was suspended 

indicated a fully charged battery.  In consistently being conservative while tweaking the 

battery model, it is possible that the battery’s capabilities have been underestimated – 

good news in terms of the viability of SuPER.  However, it was also observed that the 

simulation tends to predict higher currents and voltages than the prototype battery 

actually experiences.  Perfecting the model will require time and careful attention to 

detail.  

Another motor test was performed on the 29th of March, conditions for which are 

found in Figure 5.11. 

 

Figure 5.11 – March 29th 2007 Insolation and Temperature 
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This time the motor is run from 12:30 to 13:30, which is the peak insolation period for 

this time of year in San Luis Obispo, and the system measurements are shown in Figure 

5.12. 
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Figure 5.12 – March 29th 2007 Motor Operation Measurements 

 
It is probable that the arc in the battery current while the motor was running is due to the 

dynamometer torque unexplainably creeping downwards.  Figure 5.13 shows the same 

scenario in simulation. 

 

Figure 5.13 – March 29th 2007 Motor Simulation 

 
Again the battery Voc was found the next day to indicate a fully charged battery.  We can 

only conclude that when starting motor operation with a full battery, there is plenty of 

available solar power to recharge the battery promptly whether the motor is powered an 

hour before peak insolation or during peak insolation.  Future studies will adjust the 
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battery model accordingly and may then take into account cloudy periods that force the 

battery to begin succeeding days with less than a full charge. 

5.3 Multi-Load Scenarios 

With the simulation, we can consider a variety of load scenarios over lengthy 

periods of time and view the ultimate effect on the battery.  In this first example we run 

all five loads every day: television (two hours), cooler (1.67 hours), lights (three hours), 

laptop (14 hours), and motor (one hour).  Again, the summer insolation data from 

Colorado will be utilized.  Figure 5.14a shows the load activation schedule for two days, 

which places a demand of 1,833Wh on the array and battery.  Note that in all of these 

examples, the two figures share the same time index.   
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Figure 5.14 – Five Load / Two Day Scenario One:  a) Load Schedule  b) SOC Estimation 
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Figure 5.14b shows that in this case the battery SOC will clearly decline each day.  

Perhaps the problem can be remedied by operating the motor only every other day.  

Figure 5.15a gives the load schedule for a two-day new scenario, in which power needs 

are reduced to 1,583Wh for the two day period.  
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Figure 5.15 – Five Load / Two Day Scenario Two:  a) Load Schedule  b) SOC Estimation 

 

Operating the motor only every other day results in a more sustainable operation 

scenario, as the second day allows for some recovery for the battery; however it can be 

seen (Figure 5.16b) that the SOC at the end of the second day is much lower than the 

initial SOC.  This is cause for concern if the motor is required to run on the third day. 
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In this final case, all cooler operation is halted and the motor is operated every 

day for one hour.  All other loads are unchanged, with the needed energy now reduced to 

1,399Wh.  See Figure 5.17 for the schedule and results. 
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Figure 5.16– Four Load / Two Day Scenario Three:  a) Load Schedule  b) SOC Estimation 

 

The battery is now able to build charge on sunny days, which will allow some reasonable 

DOD to occur on cloudy days without significant repercussions to battery lifetime. 
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5.4 Power Losses 

Systems whose characteristics include high currents traversing non-trivial 

distances face losses due to resistances in components such as cables and switches.  

SuPER is no exception.  Model development has not reached the point where 

sophisticated representations for these sinks have been developed.  Using the measured 

voltage drop and current flow between the converter and battery, and between battery and 

loads, some idea of losses can be estimated.  Consider a simple resistive loss model 

(Figure 5.18) where R1 and R2 represent switch and cable resistances between 

subsystems. 

 

Figure 5.17 – Simple Resistive Loss Model 

 
Some data has been gathered on system losses under multiple load scenarios.  Figure 5.19 

shows power levels for various system components while running a 70W load for 250 

minutes.  P3 represents the power consumed by the load. 
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Figure 5.18 – System Power Levels, 70W Load on CKT #3 
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Using this information, we can capture an idea of the efficiency of the Outback MX60 

converter at certain power input levels.  Figure 5.20 shows how the efficiency rises as the 

input power drops. 
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Figure 5.19 – PV Power and Converter Efficiency 

 
In fact, with input power of about 50W or less, converter efficiency is near 100%.  Some 

of these phenomena uncovered while exploring status system information will certainly 

attract further investigation in the near future.  Averaging chunks of this data, we can 

conjecture a bit as to the behavior of the elements involved in these losses, assuming the 

given simple loss model (see Table 5.1).  

Table 5.1 – Estimates for Values of Loss Contributive Elements 

Characteristic PV Power Value 

MX60 efficiency 90W ~92% 
MX60 efficiency 80W ~94% 
MX60 efficiency <= 50W ~100% 
R1 90W .031 Ω 
R1 80W .029 Ω 
R1 50W .024 Ω 
R2 90W .038 Ω 
R2 80W .055 Ω 
R2 50W .048 Ω 
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There is a clear indication that R1 will increase as the PV array power increases.  The 

losses are greatly dependent on the amount of power being distributed, as resistive losses 

are proportional to the square of the current.  R2 is more difficult to qualify.   

The 10-gauge wire connecting the DC-DC converter output to the battery and 

loads runs approximately twelve feet in length; twelve feet of 10-gauge wire offers about 

.02 Ω of resistance.  Presupposing that we can attribute some of the measured losses to 

the wiring, but not all, this value seems to corroborate what has been observed.  This first 

generation Simulink model has had a collective .04Ω resistance introduced on the 

converter and battery output, a value chosen to lie between the calculated wire resistance 

and the estimated simple loss model resistances representative of the uncertainty in the 

true sources of these losses.     

Future work on SuPER will need to examine these effects.  Analysis should be 

made towards the end of discovering where exactly these losses occur, and how they 

relate to the voltage and current.  Potentially, the highest sources of loss may be the 

cables, battery inefficiency, and switches.  Also, the various sensor boards will consume 

some power.  A possibility worth investigating would be increasing the voltage and 

decreasing the current on the load side of the converter, perhaps by going to a 24V 

battery.  Another factor for inconsistency to keep in mind is that only the PV array block 

takes temperature into account for calculating power output.  In reality, the battery and 

converter subsystems will also be dependent upon the temperature.  Improvements can be 

made to factor temperature levels into model behavior. 
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Chapter 6:  Conclusion 

6.1 Achievements 

The loop still has not been closed on the Phase 1 system, as we set out to do in the fall 

of 2006.  It was necessary to adjust some of the team goals to better fit the available 

human resources.  Focus was turned toward simulating the entire system in software.  

After months of effort, the first generation Simulink model presented herein has shown 

heartening results.  The SuPER team is now equipped with a viable “first-order” 

Simulink model of the entire system.  Adjustable parameters will enable the simulation to 

provide greater service as a virtual representation of the SuPER prototype in the near 

future.  The model can then be easily modified to allow for 

- increasing the PV array size 

- introducing more efficient PV array technology 

- introducing new battery models 

- adding new loads 

- better representation of power losses in the system (heat, etc) 

- development of adaptive control   

The status and control software structure is now ready for the future integration of the 

DC-DC converter, although some modifications may be necessary depending upon the 

manner in which the converter will be controlled.  The Phase 0 prototype has been put 

through its paces, as all five developmental loads have been tested and characterized.  

With the assistance of undergraduate students, great progress on other system aspects 

such as LED lighting and high-current PCB manufacturing has been made.  These 
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simulation tools and other development processes that have been established will 

facilitate the achievement of SuPER’s goals for the next few years.  We are well on our 

way. 

6.2 Reflection on System Sensitivities 

Despite some hardware setbacks, the SuPER project has arrived at a key point in 

the development process.  Many of the limitations of the design have been uncovered and 

assessed, and work identified for years ahead.  The battery turns out to be one of the most 

difficult problems because of the complexities involved in accurately modeling it.  In 

order to create a system that will be cost effective, we desire the battery to last as long as 

possible.  To create control software that will optimize battery life, intimate knowledge of 

the battery’s characteristics must be obtained.  There are other battery technologies that 

are more reliable and more easily characterized than the VRLA variety, but suffer from 

other limitations such as stunted storage capacity.  Improvements in electrical energy 

storage technologies will hopefully usher SuPER towards greater viability.   

Besides optimizing battery life, there are two fundamentally important challenges 

that will confront the future generations of SuPER project collaborators:  lowering system 

cost and finding ways to utilize power more efficiently.  SuPER’s success will of course 

rely on advances in PV cell technology as well.  The goal of the SuPER project is that 

when that day arrives, new PV cells and batteries can simply be inserted into an already-

proven digitally-controlled distribution system.  To justify the cost of the new cells and 

batteries, the balance of the SuPER infrastructure must be as economical and efficient as 

possible. 
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Table 6.1 outlines the project costs to date.  Loads are part of the development 

cost, but are not part of the $500 target for the end user system cost. 

Table 6.1 – SuPER Development Costs to Date 

Unit Cost Infrastructure 
Dell Inspiron B120 Laptop 
Lind Electronics DC-DC Converter 
BP 150SX Solar Panel 
12V Gel VRLA Battery 98 Ah (20h)  
NI USB-6009 DAQ Devices 
Wiring, breakers, connectors, etc. 
PCBs 

$450 
$140 
$750 
$150 
$420 
$460 
$400 

Loads GPX Portable 5” television 
Coleman 12V DC Refrigerator 
LED Lights (x4) 
Dayton DC motor 

$15 
$90 
$70 
$275 

 

These costs total $2,074 for the SuPER infrastructure, with nearly $3,000 in 

developmental expenditures up to this point.  One of the key cost-cutting measures will 

be the replacement of the laptop and NI DAQ devices at the core of the status and control 

system.  Eventually we would like to see a low-power FPGA take on all status and 

control duties.  This alone would reduce costs by nearly $1,000.  As the system takes 

shape, wiring and parts costs will be reduced significantly, and PCB manufacturing 

processes will have the same effect.  Certainly the battery and PV array will be the most 

costly single components of the system, and hence SuPER’s anticipation of future 

breakthroughs on these technologies.    

6.3 Recommendations  

The need to finalize the Phase 1 system by completing integration of the DC-DC 

converter cannot be overemphasized.  The Outback MX60 is strictly a temporary 

solution, and much of the Simulink model’s future effectiveness as a virtual system 
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modeling tool and test bed will depend upon the converter.  This is the single most 

important step for furthering SuPER progress. 

The SuPER team may want to remove confusion by using the Celsius scale for all 

future cooler load work.  Fahrenheit has been used to this point because the manufacturer 

chose to describe the cooler characteristics on that scale. 

The losses inherent in the prototype infrastructure ought to be investigated.  There 

is nothing that will restrict further progress on SuPER in this matter, but achieving the 

highest possible efficiency may require a future redesign of the distribution bus side of 

the system.   

The VRLA battery storage is another topic of interest whose characteristics may 

also contribute to some of the system losses; however, it is not entirely clear how much 

more effort should be expended toward properly modeling the battery.  Certainly some 

time should be spent towards including battery temperature as one of the model inputs, 

but despite the large amounts of research done on these types of batteries they are still 

destined to be difficult to model accurately.  A decision should be made in the near future 

on how much more time and money should be invested into the current battery and 

model.  As for incorporation of the battery temperature measurement, it appears that 

thermocouple technology is the best bet for reading the temperature on the battery itself. 
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Appendix A:  NI-DAQmxBase 2.1 API Function List 
 

Function Purpose Function Names 
Task Configuration/Control DAQmxBaseClearTask 

DAQmxBaseCreateTask 
DAQmxBaseIsTaskDone 
DAQmxBaseLoadTask 
DAQmxBaseResetDevice 
DAQmxBaseStartTask 
DAQmxBaseStopTask 

Create Analog Input Channels DAQmxBaseCreateAIThrmcplChan 
DAQmxBaseCreateAIVoltageChan 

Create Analog Output Channel DAQmxBaseCreateAOVoltageChan 
Create Digital Input Channels DAQmxBaseCreateDIChan 
Create Digital Output Channels DAQmxBaseCreateDOChan 
Create Counter Input Channels DAQmxBaseCreateCIPeriodChan 

DAQmxBaseCreateCICountEdgesChan 
DAQmxBaseCreateCIPulseWidthChan 

Create Counter Output Channels DAQmxBaseCreateCOPulseChanFreq 
Timing DAQmxBaseCfgSampClkTiming 

DAQmxBaseCfgImplicitTiming  
Triggering DAQmxBaseDisableStartTrig 

DAQmxBaseCfgDigEdgeStartTrig 
DAQmxBaseCfgAnlgEdgeStartTrig 

Reference Trigger DAQmxBaseCfgAnlgEdgeRefTrig 
DAQmxBaseCfgDigEdgeRefTrig 
DAQmxBaseDisableRefTrig 

Read Functions 
 

DAQmxBaseReadAnalogF64 
DAQmxBaseReadBinaryI16 
DAQmxBaseReadCounterF64 
DAQmxBaseReadCounterScalarF64 
DAQmxBaseReadCounterScalarU32 
DAQmxBaseReadCounterU32 
DAQmxBaseReadDigitalScalarU32 
DAQmxBaseReadDigitalU32 
DAQmxBaseReadDigitalU8 

Write Functions 
 
 

DAQmxBaseWriteAnalogF64 
DAQmxBaseWriteDigitalU8 
DAQmxBaseWriteDigitalU32 
DAQmxBaseWriteDigitalScalarU32 

Internal Buffer Configuration DAQmxBaseCfgInputBuffer 
Error Handling DAQmxBaseGetExtendedErrorInfo 
 

 88



Appendix B:  Status Data Extraction Macro for Excel 
 
There are two versions of the macro, one each for TIME_FACTOR = 15 and 
TIME_FACTOR = 30.  They are both found in super_status_macros.xls.  This macro 
performs a moving average with a window of width five, and then downsamples the 
result by a factor NUM_TO_OUTPUT * 60 / Tss (currently 150) to supply one sample 
per minute of run time.  Upon running the macro, the data appears in columns S through 
AE.  All sensor data except the converter and battery temperatures are assessed.  The 
macro can easily be edited to include them if necessary. 
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Appendix C:  PIC Serial Communication Protocol 
 
This protocol was originally created to facilitate testing over a Hyper Terminal interface, 
but later adapted to the C code.  It was designed for the 16-series, but also services the 
18-series. 
 
 
Type (send) M<value> to set 8 highest-order bits of the duty cycle register. 
Type (send) L<value> to set 2 lowest-order bits of the duty cycle register. 
The PIC will echo back an exclamation point '!' to confirm receipt. 
The highest-order bits range is integers 55 – 155, for a duty cycle of 0 – 100% (e.g. an 
integer 65 will result in a DC of 10%).  
There are only four possible values for the lowest-order bits, 0-3. 
Use chars '0', '1', '2', '3' (integers 48, 49, 50, 51) to fine-tune the duty cycle. 
     
For example, to get a duty cycle of 17.25%, type 'MHL1' in HT.  This will echo back as 
'MH!L1!’.  To get a duty cycle of 45.75%, type 'MdL3'.  This will echo back as 'Md!L3!'. 
In C, simply transmit four bytes: ‘M’ 72 ‘L’ 49 for the first case, or ‘M’ 100 ‘L’ 51. 
     
Any character entered that is not an M or L or not prefaced by M or L will be ignored and 
simply echo back followed by an '!'.  
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Appendix D:  C-MEX S-function Code 
 

D.1 PV Array S-function Code 
// function PV(block) 
// % wrapper S-function around Aki's pv array model 
// % in: G (irradiance, KW/m^2), TaC (temp, deg C), Vpv 
// % out: Ipv 
// % 
// %  
// %  Adapted to C by Tyler Sheffield 2/14/06 
// %//////////////////////////////////////////////////////////////// 
  
double Ia_new; //= bp_sx150s(Vs,G,TaC); 
double Va = Vpv[0]; 
double c = 0.8;       // attenuation coefficient based on observed max power  a
int j; 
  
// function Ia = bp_sx150s(Va,G,TaC) 
// % function bp_sx150s.m models the BP SX 150S PV module 
// % calculates module current under given voltage, irradiance and temperature 
// % Ia = bp_sx150s(Va,G,T) 
// % 
// % Out: Ia = Module operating current (A), vector or scalar 
// % In: Va = Module operating voltage (V), vector or scalar 
// % G = Irradiance (1G = 1000 W/m^2), scalar 
// % TaC = Module temperature in deg C, scalar 
// % 
// % Written by Akihiro Oi 7/01/2005 
// % Revised 7/18/2005 
// %///////////////////////////////////////////////////////////////////////////// 
// % Define constants 
double k = 1.381e-23; //% Boltzmann’s consta  nt
double    q = 1.602e-19; //% Electron charge 
// % Following constants are taken from the datasheet of PV module and 
// % curve fitting of I-V character (Use data for 1000W/m^2) 
double n = 1.62; //% Diode ideality factor (n), 
// % 1 (ideal diode) < n < 2 
double Eg = 1.12; //% Band gap energy; 1.12eV (Si), 1.42 (GaAs), 
// % 1.5 (CdTe), 1.75 (amorphous Si) 
double Ns = 72; //% # of series connected cells (BP SX150s, 72 cells) 
double TrK = 298; //% Reference temperature (25C) in Kelvin 
double Voc_TrK = 43.5 /Ns; ///% Voc (open circuit voltage per cell) @ temp TrK 
double Isc_TrK = 4.75; //% Isc (short circuit current per cell) @ temp TrK 
double a = 0.00065; //% Temperature coefficient of Isc (0.065%/C) 
// % Define variables 
double TaK = 273 + TaC[0]; //% Module temperature in Kelvin 
double Vc = Va / Ns; //% Cell voltage 
// % Calculate short-circuit current for TaK 
double Isc = Isc_TrK * (1 + (a * (TaK - TrK))); 
// % Calculate photon generated current @ given irradiance 
double Iph = G[0] * Isc; 
// % Define thermal potential (Vt) at temp TrK 
double Vt_TrK = n * k * TrK / q; 
// % Define b = Eg * q/(n*k); 
double b = Eg * q /(n * k); 
// % Calculate reverse saturation current for given temperature 
double Ir_TrK = Isc_TrK / (exp(Voc_TrK / Vt_TrK) -1); 
double Ir = Ir_TrK * pow((TaK / TrK),(3/n)) * exp(-b * (1 / TaK -1 / TrK)); 
// % Calculate series resistance per cell (Rs = 5.1mOhm) 
double dVdI_Voc = -1.0/Ns; //% Take dV/dI @ Voc from I-V curve of datasheet 
double Xv = Ir_TrK / Vt_TrK * p(Voc_TrK / Vt_TrK); ex
double Rs = - dVdI_Voc - 1/Xv; 
// % Define thermal potential (Vt) at temp Ta 
double Vt_Ta = n * k * TaK / q; 
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// % Ia = Iph - Ir * (exp((Vc + Ia * Rs) / Vt_Ta) -1) 
// % f(Ia) = Iph - Ia - Ir * ( exp((Vc + Ia * Rs) / Vt_Ta) -1) =   0
// % Solve for Ia by Newton's method: Ia2 = Ia1 - f(Ia1)/f'(Ia1) 
Ia_new = 0; //% Initialize Ia_new with zero 
  
// % Perform 5 iterations 
for (j=1; j<=5; j++) { 
    Ia_new = Ia_new - (Iph - Ia_new - Ir * ( exp((Vc + Ia_new * Rs) / Vt_Ta) -1)) / (-1 - 
Ir * (Rs / Vt_Ta) * exp((Vc + Ia_new * Rs) / Vt_Ta)); 
} 
  
Ipv[0] = Ia_new*ac; 
 

D.2 Control S-function Code 
// control_plus_src.c 
// function control(block) 
// % function to execute MPPT via pwm duty cycle of pv module and control load 
// % switches (1 == bulk charge, 2 == float charge) 
// % in: Vpv, Ipv, Vb, charge_mode 
// % out: DC, DCprev, Pa 
// % 
// % Written by Tyler Sheffield 12/10/06 
// % Adapted to C by Tyler Sheffield on 2/14/06 
// %//////////////////////////////////////////////////////////////// 
  
//     % Define variables and initialize 
double C = 0.025;        //% Step size for duty cycle change 2.5%     
  
//     % Calculate new Pa 
double Pa_new = Vpv[0] * Ipv[0];    
  
//  deltaPa adjustment offset 
double dpoffset = 0; 
  
//     pass-through values 
double DCnew = DC[0];  
charge_mode_out[0] = charge_mode[0]; 
  
if (charge_mode[0] == 1 && Pa_new < 3)        // low power state, always go up 
  DCnew = DC[0] + C; //% Increase DC 
  
else if (charge_mode[0] == 1 && Vb[0] < 13.7){   //        % bulk charge case                                
  //           % P&O Algorithm starts here 
  double deltaPa = Pa_new - Ppv[0] + dpoffset;                           
  count[0] = 0;  // reset float mode counter 
  if (deltaPa >= 0) {   //      % keep going 
      if (DC[0] > DCprev[0]) 
          DCnew = DC[0] + C; //% Increase DC 
      else 
          DCnew = DC[0] - C; //% Decrease DC               
  } 
  else if (deltaPa < 0) {     % go opposite //
      if (DC[0] > DCprev[0]) 
          DCnew = DC[0] - C; //% Decrease DC 
      else 
          DCnew = DC[0] + C; //%Increase DC 
  } 
  else 
      DCnew = DC[0]; //% No change 
} //elseif 
  
else if (charge_mode[0] == 1 && Vb[0] >= 13.7) { 
 count[0] = count[0]+1; 
 if (count[0] > 1) {    // must read 13.7 twice to enter float mode 
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     charge_mode_out[0] = 2;     //% change to float mode 
     DCnew = DC[0] - C;      //% Decrease DC 
 } //if 
} //elseif                
  
else if (charge_mode[0] == 2 && Vb[0] >= 13.4)    //% move towards disconnect 
 DCnew = DC[0] - C;      //% Decrease DC 
  
else if (charge_mode[0] == 2 && Vb[0] < 12.7) {    //% reenter bulk mode (must avoid 
thermal runaway) 
 charge_mode_out[0] = 1; 
 //DCnew = DC[0] + C; //% Increase DC            
}   
  
if (DCnew < 0) 
 DCnew = 0; 
if (DCnew > 1.  0)
  DCnew = 1.0; 
//        % Update history 
DCprev[0] = DC[0]; 
DCout[0] = DCnew; 
Ppv[0] = Pa_new; 
 
 

D.3 Switch Control S-function Code 
// function swcontrol(block) 
//  
// % function to control load switches based on scenario 
// %  
// % all ton/toff values are in minutes of the day 
// % Ts = one minute 
// % in: scenario number, system time 
// % out: switches[5] 
// % 
// % Written by Tyler Sheffield 2/7/07 
// %//////////////////////////////////////////////////////////////// 
  
#define INSTANCES 8          // number of on/off pairs for each load 
#define INA 5000        // defines inactive parameter (never reached in time) 
int i=0,j=0; 
double table[5][INSTANCES];            // set up time table 
double stime1000 = stime[0]*1000; 
//int stime_int = (int) stime1000;   // this skews the value for some reason 
  
// %         [ 
  // %         tv_ton            tv_toff ; 
  // %         cooler_ton        cooler_toff ; 
  // %         light_ton         light_toff  ; 
  // %         laptop_ton        laptop_toff  ; 
  // %         motor_ton         motor_toff  ; 
  // %         ] 
if (((int)scenario[0]) == 0) { 
   table[0][0]=INA;table[0][1]=INA;  table[0][2]=INA;table[0][3]=INA;  
table[0][4]=INA;table[0][5]=INA;      table[0][6]=INA;table[0][7]=INA; 
   table[1][0]=INA;table[1][1]=INA;  table[1][2]=INA;table[1][3]=INA;  
table[1][4]=INA;table[1][5]=INA;      table[1][6]=INA;table[1][7]=INA; 
   table[2][0]=60;table[2][1]=120;     table[2][2]=INA;table[2][3]=INA;  
table[2][4]=INA;table[2][5]=INA;   table[2][6]=INA;table[2][7]=INA; 
   table[3][0]=0;table[3][1]=120;  table[3][2]=720;table[3][3]=INA;  
table[3][4]=INA;table[3][5]=INA;        table[3][6]=INA;table[3][7]=INA; 
   table[4][0]=INA;table[4][1]=INA;  table[4][2]=INA;table[4][3]=INA;  
table[4][4]=INA;table[4][5]=INA;        table[4][6]=INA;table[4][7]=INA; 
} 
if (((int)scenario[0]) == 1) { 
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   table[0][0]=INA;table[0][1]=INA;  table[0][2]=INA;table[0][3]=INA;  
table[0][4]=INA;table[0][5]=INA;      table[0][6]=INA;table[0][7]=INA; 
   table[1][0]=0;table[1][1]=100;  table[1][2]=INA;table[1][3]=INA;  
table[1][4]=INA;table[1][5]=INA;      table[1][6]=INA;table[1][7]=INA; 
   table[2][0]=INA;table[2][1]=INA;     table[2][2]=INA;table[2][3]=INA;  
table[2][4]=INA;table[2][5]=INA;   table[2][6]=INA;table[2][7]=INA; 
   table[3][0]=0;table[3][1]=INA;  table[3][2]=INA;table[3][3]=INA;  
table[3][4]=INA;table[3][5]=INA;        table[3][6]=INA;table[3][7]=INA; 
   table[4][0]=INA;table[4][1]=INA;  table[4][2]=INA;table[4][3]=INA;  
table[4][4]=INA;table[4][5]=INA;        table[4][6]=INA;table[4][7]=INA; 
} 
for (i=0;i<5;i++) {         // i is the load index 
   for (j=0;j<8;j++) {     // j is the time value index 
       if (fabs(table[i][j] - stime1000) < .1 ) {  // double type adjustment 
           switches[i] = !switches[i];              // flip switch 
           break; 
       } //if 
   } //for 
} //for 
 

D.4 Battery S-function Code 
// batt_voltage_src.c 
// % VRLA battery model 
// % in: SOC1 (initial SOC), I1 
// % out: SOC2, Vbat 
//  
//   Adapted to C by Tyler Sheffield 2/14/06 
// %//////////////////////////////////////////////////////////////// 
  
// define constants 
double SD = 4.34e-5; //%battery self-discharge rate (h^-1) 
double SOCm = 1330; //%max. battery energy (Wh) 
double ns = 6; //%number of 2V series cells 
double SOC,ee,B;      // temp vars 
  
// adjustable parameters     
double k = .8; //%battery charge/discharge efficiency 
double t = 0.0033334;    // time step constant (equal to block sample time converted to 
real time) 
// resistance model adjustment multipliers 
double rd8=5,rc8=15,rd9=50,rc9=15,rd10=50,rc10=15;  
// SOC coefficients 
double phi8=2.174, phi9=1.43, phi10=.625; 
  
if (fabs(I1[0]) > 2)            // high current case requires battery capacity adjustment 
   SOCm = -179.68*log(fabs(I1[0])) + 1435.2;      // taken from Excel curve mapping 
  
SOC2[0] = SOC1[0];   
B = SOC2[0];        // line 75  
  
if (SOC1[0] < .8) {             //% under 80% ca  se
   if (I1[0] <= 0){          // % discharge mode 
       V1[0] = (1.95 + .18*B)*ns; 
       R1[0] = (.19 + .1037/(B-.14))*ns*rd8/SOCm; 
   } 
   else if (I1[0] > 0) {        % charge mode //
       V1[0] = (2 + .148*B)*ns; 
       R1[0] = (.758 + .1309/(1.06-B))*ns*rc8/SOCm; 
   }                               
    ee = ((k*V1[0]*I1[0] - SD*SOC2[0]*SOCm)*t) * phi8; 
   SOC =  SOC2[0] + ee/SOCm; 
   SOC2[0] = SOC; 
} //if 
  
else if (SOC1[0] >= .8 && SOC1[0] < .9)      {   
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   if (I1[0] <= 0){         // % discharge mode 
       V1[0] = (1.95 + .18*B)*ns; 
       R1[0] = (.19 + .1037/(B-.14))*ns*rd9/SOCm;  //real         
   } 
   else if (I1[0] > 0) {      //% charge mode 
       V1[0] = (2 + .148*B)*ns; 
       R1[0] = (.758 + .1309/(1.06-B))*ns*rc9/SOCm; 
   } 
   ee = ((k*V1[0]*I1[0] - SD*SOC2[0]*SOCm)*t) * phi9; 
   SOC =  SOC2[0] + ee/SOCm; 
   SOC2[0] = SOC;                  
} //else if 
  
else if (SOC1[0] >= .9 && SOC1[0] < 1)   {       
   if (I1[0] <= 0){           //% discharge mode 
       V1[0] = (1.95 + .18*B)*ns;                      
                         R1[0] = (.19 + .1037/(B-.14))*ns*rd10/SOCm; 
   } 
   else if (I1[0] > 0){        % charge mode //
       V1[0] = (2 + .148*B)*ns; 
        R1[0] = (.758 + .1309/(1.06-B))*ns*rc10/SOCm; 
    } 
 ee = ((k*V1[0]*I1[0] - SD*SOC2[0]*SOCm)*t) * phi10; 
 SOC =  SOC2[0] + ee/SOCm; 
 SOC2[0] = SOC; 
} //else if 
  
else if (SOC1[0] >= 1) { 
 if (I1[0] <= 0){           //% discharge mode 
     V1[0] = (1.95 + .18*B)*ns; 
     R1[0] = (.19 + .1037/(B-.14))*ns*50/SOCm; 
 } 
 else if (I1[0] > 0){        //% charge mode 
     V1[0] = (2.1 + .148*B)*ns; 
     R1[0] = (.758 + .1309/(1.06-B))*ns*30/SOCm; 
 } 
 ee = ((k*V1[0]*I1[0] - SD*SOC2[0]*SOCm)*t) / 4; 
 SOC =  SOC2[0] + ee/SOCm; 
 SOC2[0] = SOC; 
} //else if 
  
Vbat[0] = V1[0] + I1[0]*R1[0]; 
 

D.5 Laptop S-function Code 
// laptop_load_src.c 
// function laptop_load(block) 
// % laptop load battery management mimic 
// % in: time in minutes, initial estimated battery SOC (0,1) 
// % out: load select switches, new SOC 
// % 
// % Written by Tyler Sheffield 1/15/07 
// %//////////////////////////////////////////////////////////////// 
  
LSOCout[0] = LSOC[0]; 
  
// %         % new SOC calculation 
//         mexPrintf("%lf\n",t[0]); 
if (LSOCout[0] >= 1) 
     LSOCout[0] = 1; 
else 
    {/* calculation of LSOC here*/} 
  
  
 if (LSOCout[0] >= .9) { 
     swH[0] = 0; 
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     swL[0] = 1; 
 } 
 else if (LSOCout[0] < .9) { 
     swH[0] = 1; 
     swL[0] = 0; 
 } 
  
 

D.6 Cooler S-function Code 
// cooler_load_src.c           
// function cooler_load(block) 
// % cooler temperature calculation (works only for nearly constant ext temp) 
// % in: initial interior temperature, power state, external temp 
// % out: new internal temp 
// % 
// % Written by Tyler Sheffield 3/19/07 
// %//////////////////////////////////////////////////////////////// 
  
 // set to one minute equivalent sample time 
  
   // 8 quarts water values 
 double w_rate = .008; // warming rate deg/min 
 double c_rate = .05; // cooling rate deg/min 
 //double Tdiff[0] = eTemp[0] - iTemp1[0]; 
  
 if (state[0] == 0) 
     iTemp2[0] = iTemp1[0] + w_rate; 
 else if (state[0] == 1) 
     iTemp2[0] = iTemp1[0] - c_rate; 
  
 Tdiff[0] = eTemp[0] - iTemp2[0]; 
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Appendix E:  Choosing a Fixed-Step Solver  
(extracted from [31]) 
 
When the Type control of the Solver configuration pane is set to fixed-step, the 
configuration pane's Solver control allows you to choose one of the set of fixed-step 
solvers that Simulink provides. The set of fixed-step solvers comprises two types of 
solvers: discrete and continuous. 
 
The fixed-step discrete solver computes the time of the next time step by adding a fixed 
step size to the time of the current time. The accuracy and length of time of the resulting 
simulation depends on the size of the steps taken by the simulation: the smaller the step 
size, the more accurate the results but the longer the simulation takes.  If you allow 
Simulink to choose the step size, Simulink sets the step size to the fundamental sample 
time of the model if the model has discrete states. This choice assures that the simulation 
will hit every simulation time required to update the model's discrete states at the model's 
specified sample times. 
 
The fixed-step discrete solver has a fundamental limitation. It cannot be used to simulate 
models that have continuous states.  If you attempt to use the fixed-step discrete solver to 
update or simulate a model that has continuous states, Simulink displays an error 
message. Thus, updating or simulating a model is a quick way to determine whether it 
has continuous states. 
 
The continuous solvers employ numerical integration to compute the values of a model's 
continuous states at the current step from the values at the previous step and the values of 
the state derivatives.  Simulink provides two distinct types of fixed-step continuous 
solvers: explicit and implicit solvers. Explicit solvers compute the value of a state at the 
next time step as an explicit function of the current value of the state and the state 
derivative, e.g., 

X(n+1) = X(n) + h * DX(n)  
where X is the state, DX is the state derivative, and h is the step size. An implicit solver  
computes the state at the next time step as an implicit function of the state and the state 
derivative at the next time step, e.g., 

X(n+1) - X(n) - h*DX(n+1) = 0 
This type of solver requires more computation per step than an explicit solver but is also 
more accurate for a given step size.  The following table lists the available solvers and the 
integration techniques they use.  
 
Solver Class Integration Technique 
ode1 Explicit Euler's Method 
ode2 Explicit Heun's Method 
ode3 Explicit Bogacki-Shampine Formula 
ode4 Explicit Fourth-Order Runge-Kutta (RK4) Formula 
ode5 Explicit Dormand-Prince Formula 
ode14x Implicit Newton’s Method and Extrapolation 
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The integration techniques used by the fixed-step continuous solvers trade accuracy for 
computational effort. The table lists the solvers in order of the computational complexity 
of the integration methods they use from least complex (ode1) to most complex (ode5).  
 
Choosing a Fixed-Step Continuous Solver 
 
Any of the fixed-step continuous solvers in Simulink can simulate a model to any desired 
level of accuracy, given enough time and a small enough step size. Unfortunately, in 
general, it is not possible, or at least not practical, to decide a priori which solver and step 
size combination will yield acceptable results for a model's continuous states in the 
shortest time. Determining the best solver for a particular model thus generally requires 
experimentation. 
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Appendix F:  Managing Scope Data 
 
In the scope parameters dialogue box, click on the data history tab.  Check the save data 
to workspace box and type the name of the struct wherein to store the data.  At the format 
menu, select Structure with time.  When the simulation has finished running, your data 
will be available in the MATLAB workspace, identified by the previously specified 
name.  Double-click on the desired struct to open the array editor.  To display the 
recorded scope data in a spreadsheet form, perform the following actions: 
 double-click the signals box 
 double-click the cell in the column corresponding to the desired signal 
 double-click the values box 
The data can be plotted by selecting the column and clicking on the plot icon of the Array 
Editor toolbar.  To export the data to Excel, run the m-file storage_script.m; it will take a 
moment for the data to be exported.  The data is written to a file in the MATLAB 
sim_waves directory called last_sim_data.xls. 
 
Setting the Scope Decimation Value  
 
Open the scope window and click on the parameters button in the upper left.  On the 
bottom is a text box marked Decimation.  Enter the decimation value in the box. 
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Appendix G:  Specifying Coverage Report Settings 
(extracted from [31]) 
 
Coverage report settings appear in the Coverage Settings dialog, accessed through the 
Tools menu.  Select the Generate HTML Report option to create an HTML report 
containing the coverage data generated during simulation of the model.  A large part of 
using model coverage is specifying model coverage reporting options in the Coverage 
Settings dialog box.  
 
Some of the data generated by the coverage report includes total simulation time, signal 
ranges, and subsystem complexity details.  Note that activating coverage reporting may 
increase simulation time. 
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Appendix H:  Improving Simulation Performance and 
Accuracy  
(extracted from [31]) 
 
Simulation performance and accuracy can be affected by many things, including the 
model design and choice of configuration parameters.  The solvers handle most model 
simulations accurately and efficiently with their default parameter values. However, some 
models yield better results if you adjust solver parameters.   
 
Design Factors in Simulation Speed 
 
Slow simulation speed can have many causes. Here are a few: 
 
When a model includes a MATLAB function block or M-file S-function, the MATLAB 
interpreter is called at each time step, drastically slowing down the simulation. Using the 
math function block and C-MEX file S-functions will eliminate the need to invoke the 
interpreter. 
 
Your model may include a Memory block. Using a Memory block causes the variable-
order solvers (ode15s and ode113) to be reset back to order 1 at each time step.  
However, this does not appear to be an issue when using the fixed-step discrete solver. 
 
The maximum step size may be too small. If you changed the maximum step size, try 
running the simulation again with the default value (auto). 
 
Setting the relative tolerance too low can slow down the simulation. The default relative 
tolerance (0.1% accuracy) is usually sufficient. For models with states that go to zero, if 
the absolute tolerance parameter is too small, the simulation can take too many steps 
around the near-zero state values.  
 
The problem might be stiff, but you are using a nonstiff solver. Try using ode15s. 
 
Mixing sample times that are not multiples of each other causes the solver to take small 
enough steps to ensure sample time hits for all sample times.  Smaller steps lead to longer 
simulation times. 
 
Be sure to eliminate algebraic loops if possible. The solutions to algebraic loops are 
iteratively computed at every time step. Therefore, they severely degrade performance.  
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Appendix I:  SuPER Prototype Operation 
 

1. Ensure that all breakers are open. 
2. Insert the hub cables into the laptop USB ports, followed by the NI DAQ device 

cables.  Then insert the PIC cable into the open laptop port.  The mouse cable 
should be inserted into the hub.  

3. Power on the laptop (at this point running on its internal battery) and at the GRUB 
window choose the latest version of Red Hat.  

4. Login using root:super1.  
5. Open a shell and change directories (cd) to /home/super1/pvpro/src .  
6. Close PV, converter and battery circuits by flipping the breakers marked PV, 

BATT and BUS. 
7. Execute the software with the command ./contAcquireNChan .  
8. Flip the breakers as desired to power indicated loads.  
9. To shut down the software, use ‘q’.  
10. Shut everything down by opening all circuits at the breakers.  
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Appendix J:  File README 
 
SuPER Control System and Simulation README 
Author:  Tyler Sheffield (tyler@galatix.com, 760.460.6880), 3/28/07 
Last Update: 4/25/07 
 
The files described in this readme are organized by directory, local to this CD.   
File names have type extensions, while descriptions are bookended by +. 
Directories on Linux are given in parentheses, if applicable. 
Obsolete files (no longer used by the sim or master control) are marked with a ^. 
Name placeholders, or wildcards if you will, are between ". 
An * is a file type wildcard. 
 
General Files: 
/ 
+a collection of observations and important things to remember compiled during SuPER's 
lifetime+ 
SuPER Master Documentation.doc  
 
+the final thesis doc+ 
sheffield_thesis_4-25.doc 
 
+the defense power point presentation+ 
SuPER Defense Presentation.ppt 
 
+SuPER lab bulletin poster files+ 
nov 2 presentation (color rev).ppt 
nov 2 presentation.ppt 
nov 2nd presentation (alt 7).pdf 
 
 
Laptop C Code: 
c_code/ 
+All project code is found on the laptop in the directory file:/home/super1/.  The 
pvpro/bin/, pvpro/etc/, and pvpro/lib/ folders  
 
contain various utilities for the NI-DAQs to work properly.  The pvpro/include/ folder 
has the file NIDAQmxBase.h, which is  
 
included in all source that interfaces to the NI-DAQs.  Every time new interface code is 
written, it should have these four  
 
accompanying folders and their contents.  Each src/ folder contains the source code,  
executable, and Makefile.  Simply type  
 
'make' at the prompt while inside the src/ directory to compile the source.+ 
 
digpot/src/ 
(/home/super1/digpot/src/) 
 
 +code for communicating over the 2-wire serial interface of the MAX5529 digital 
pot+ 
 potcomm.c 
 
cap/src/ 
(/home/super1/cap/src/) 
 +code for the switches that control charging and discharging the ultracapacitor+ 
 cap.c 
 
pvpro/src/ 
(/home/super1/pvpro/src/) 
 
 +the brain of SuPER, where you will find main+ 
 contAcquireNChan.c 
 
 +temporary storage file currently where the battery SOC is written+ 
 Super_Output.csv 
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pvpro/pno/ 
(/home/super1/pvpro/pno/) 
 
 +PIC communication functions+ 
 commpic.c 
 
 +stand-alone PNO code+ 
 pno.c^ 
 
 +PNO functions+ 
 pnopal.c 
 
 
MATLAB: 
draft_model/ 
 +these are the original Level 2 M-file S-functions+ 
 batt_voltage.m^ 
 control.m^ 
 control_plus.m^ 
 laptop_load.m^ 
 PV.m^ 
 swcontrol.m^ 
 
 +files generated by MATLAB from the S-function building blocks, upon build 
command+ 
 "module_name"_c.c 
 "module_name"_c.mexw32 
 "module_name"_c_wrapper.c 
 "module_name"_c.tlc 
 
 +the storage files for the C-MEX S-function C code, not used by MATLAB+ 
 "module_name"_src.c 
 
 +files associated with Aki's PV array model, and no longer directly used in 
simulation+ 
 bp_sx50.m^ 
 bp_sx150s.m^ 
 PVmpp02.m^ 
 
 +script for writing all scope data out to Excel files (writes to 
sim_waves/last_sim_data.xls)+ 
 storage_script.m 
 
 +Tyson Den Herder's final model+ 
 system13a.mdl^ 
 
 +final SuPER model using C-MEX S-functions+ 
 super_c.mdl 
 
 +other stages in the model development process, included in case of need as 
reference+ 
 "model_name".mdl^ 
 
 
PIC Assembly: 
pic/ 
+Note that there are other required files that come packaged with MPLAB, not supplied 
here.  The mplab/ folder contains the MPLAB  
 
setup files.  The diypack/ folder contains the MicroPro software.  The usbdrivers/ folder 
contains drivers for the programmer  
 
device. + 
  
 +old PIC 16F877A code+ 
 pwm.asm^ 
 
 +current PIC 18F4320 code+ 
 pwm_18.asm 
 
 +compiled hex generated by MPLAB, used to program PIC+ 
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 pwm_18.hex 
 
 +MPLAB project file (workspace)+ 
 SuperPWM_18.mcw 
 
 +other files needed by the project file+ 
 SuperPWM_18.* 
 
Assembly code editing, building and programming instructions: 
 Open MPLAB 
 Click File->Open Workspace 
 Choose C:\Super\SuperPWM_18.mcw 
 Edit pwm_18.asm as needed 
 Click Project->Build All 
 Connect the K128 programmer with PIC to the PC via a USB cable 
 It may be necessary to check the COM port of the device with Device Manager 
 Open MicroPro 
 Click File->Port and enter the COM port of the USB programmer 
 Check that the Chip Selector is correctly set 
 Click File->Load 
 Select the file C:\Super\pwm_18.hex 
 Click Fuses and make sure the Oscillator pull-down menu is set to HS 
 Click Program  
 
 
Excel: 
macros/ 
 +status system data extraction macros, see thesis Appendix B for usage 
instructions+ 
 super_status_macros.xls 
 
 
Data Files: 
prototype_data/ 
 +status system data organized by date of operation+ 
 
sim_waves/ 
 +this folder is full of a variety of stored simulation results, just a couple 
groups are identified here+ 
 
 +images of sim waves from first successful 24-hour period complete simulation run 
(ran for 22 hours real time)+ 
 first all "name".bmp 
 
 +simulation results of insolation and temp data taken from prototype motor 
operation periods+ 
 march "date" motor.xls 
 
 
All Others: 
drawings/ 
 +MicroCap schematic drawings+ 
 "drawing name".cir 
 
 +Visio drawings, flowcharts, etc.+ 
 "drawing name".vsd 
 
experimental_data/ 
 +A repository for all other data and worksheets, etc. that had no place anywhere 
else+ 
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